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In a previous paper in this journal [1] we have studied the local behavior of

solutions of non-linear second order partial differential equations having the form
div A (x, u, u,) = B (x, u, u,). (1)

Here A is a given vector function of the variables x,u,u,, B is a given scalar func-
tion of the same variables, and u,=(8u/8x,,...,0u/0x,) denotes the gradient of the
dependent variable u=wu(z), where 2={(x,,...,2,). The final chapter of [1] treated a
variety of problems concerning the behavior of solutions at an isolated singularity. In
that chapter I found it necessary to impose the condition B=0, a condition which had
not been required in the preceding parts of [1]. The main purpose of the present paper
is to show that this additional condition can be removed, and thus to complete, in an
important way, the theory of the earlier paper.

We assume as always that the functions A4 and B are defined for all points x in
some connected open set (domain) Q of the Euclidean number space E", and for all

values of » and u,. Furthermore, they are to satisfy inequalities of the general form
|4 (2, u, )| <alpl +Bju|* +e
1B (x,u, p)|<c|p]* +dluf*t+f 2)
p- A (,u, p) > |p|¢ - dIuI“ -9

where the exponent « is a fixed number in the range 1 <a <=, the coefficient a is a

positive real number, and the coefficients b through g are measurable functions of z
contained in the respective Lebesgue classes

b’ e€ Lnl(a—l—s); c€ Lnl(l—:); d’ fa g € Lnl«z—s),
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where £>0, (if x<n, the Lebesgue class of b can be weakened to L, ;). We shall
then prove the following result, generalizing Theorem 12 of [1] to the case of a non-

vanishing right hand side B(z, u, u,).

TaEOREM 1. Let u be a continuous solution of (1) in the set D—{0}, where D
is a domain in Q. Suppose that w>= L for some constant L. Then either u has a remov-
able singularity at 0, or else

plo= n)/(a—l)’ a<mn,
U

3)
log 1/, x=mn,
in the meighborhood of the origin. (Here f~g means that C'<f/g< (", where C' and C"

are positive constants.)

This result applies in particular to solutions of the variational problem

6JF(x, u, u;)dr=0,

provided the integrand obeys certain natural conditions (cf. [2]). In the case of qua-
dratic variational problems, for example, Theorem 1 implies that the order of growth
at a positive isolated singularity is 7> " or log 1/r, depending on whether n>2 or
n=2. Earlier results of a similar nature are noted in the introductory paragraphs
of [1].

Theorem 1 is proved in the following two sections. In contrast with the simple
statement of the theorem, the intricacy of the proof comes as something of a sur-
prise, lending its own interest to the result. The method of proof furthermore shows
that a solution with a positive isolated singularity has certain of the attributes of a
fundamental solution (cf. Theorem 3). In Section 4 we show under suitable conditions
that there exists a solution of (1) with precisely the asymptotic behavior (3). This
result is & generalization of Theorem 13 of [1], both in the equation treated and in
the weaker structure required. For linear equations
ou

ax‘+du+f )

0 ou
—|ay—+bute]=c
ﬁx,( ”8:!:, 1% 1) i
it is possible to obtain somewhat more detailed conclusions. In Section 5 we consider
two results generalizing Theorems 14 and 15 of reference [1]. Although we shall not
present the details here, it is also worth noting that the results of the paper may

be used to construct a Green’s function G(z,y) for (4), having the usual properties



ISOLATED SINGULARITIES OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 221

of positivity and symmetry, and yelding a representation formula for solutions of the
Dirichlet problem with zero boundary data.

The final section of the paper is more or less unrelated to the earlier part. Here
we take the opportunity to correet an error in f1] occurring in the statermrent and
proof of the maximum principle. We also point out several places in [1} where the
results can be slightly improved.

It is assumed throughout that the reader is familiar with Chapters I and II of
[I]. Moreover, the notation and terminology of that paper will be used as needed.
In particular, we recall that a continuous solution of (1) in a domain D is a function
u which is continuous and has strong derivatives which are locally of class L, over
D, and is such that

f(¢xA+¢B)dx=0

for any continously differentiable function ¢ =d¢(x) with compact support in D.

1. Proof of Theorem 1. First Part

We shall assume that the singularity at O is not removable. To prove the theo-
rem it must therefore be shown that w has the asymptotic behavior (3) in the neigh-
borhood of the origin. We shall restrict our discussion, in fact, to the ball § = {|z| < B}
in D, where R is chosen so that the Lebesgue norms [[bf|, |lc|, and ||¢|| over 8 are
suitably small (how small will be determined in the course of the proof, bwt n any
case will depend only on «, n, and ¢£). It may be assumed without loss of generality
that <0 on the circumference |«|=R; indeed, if this is not already the case, it can
be accomplished simply by the subtraction of a suitable constant from u, a device
which affects the structure of (1) only by increasing the relatively unimportant coef-
ficients e, f, and g¢. ‘

Lemma 1. Let © be a stongly (L,) differentiable function with compact support in
|v| < B, which is identically 1 in some neighborhood of the origin. Then

f{@,-A+(®—1)B}dx=Const.=I?,

where the constant is independent of the particular choice of ©.

Proof. Let ® and ©® be two functions satisfying the conditions of the lemma.
‘Then ¢ =0 —© has compact support in 0< |t]<R, and
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f{(@“@)z'A+(@’®)B}dx=0.
Since ©®=1 near 0 this can be rewritten
f{@,-;‘H—(@—1)3}dx=f{®,';4+(®—1)3}dx,

proving the lemma.

Since we have assumed that the singularity at O is not removable, it is clear
from the remark on page 278 of [1] that u —oo as z — 0. Hence there exists a constant
0, such that u>1 for 0<|z|<g, Let m=m(c) denote the minimum of % on a given
sphere |r|=0, (6<0,). For ¢<|2|<R let us define

0 if u(2)<0
v=v(xr,0)=3 u i O<ulx)<m
m if u{z)>m.
We suppose the definition of » to be extended to the entire ball S by setting v=m
when |2|<o. Then v is a strongly differentiable function with compact support in

|z| < R, and is identically equal to m in a neighborhood of the origin.

Thus for fixed o< ¢, and m=m(c), v=1v(z,0), we have by Lemma 1,

m]?=f{v,-;4(x, ,u) + (v~ m) B, u, %)} do

)
= f{v, - Az, v,v,) + (v —m) B (z, u,u,)} dz,

since v =u and v, = u, almost everywhere in the set where v, + 0. Now using inequality (2),
fvx - Az, v,0,)dx > J.(Ivz[“ —dv*—g)dz. (6)

The second term on the right may be estimated by the Holder and Sobolev inequal-
ities, thus(?)
Jao <l < Const. o 1)

The radius R introduced at the beginning of the proof can be chosen so small that
the coefficient of |jv.|[z is <1. Hence by (6) and (7)

(*) This calculation is given for the case @ <n. If @ =n only slight changes are necessary.
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v, A(x,v,v,) dx>%f|v;|°‘dx— c, (8)

where C is an appropriate constant. Moreover, by Lemmas 9 and 10 of [1], since

v=m for |z|<g.

n—o «a—1 e
— ¢"7E a<n
flvA“dx?wnm“ (ac~ l) ’ ’

(log R/a)'"", x=n.

(9)

Inequalities (8) and (9) serve to estimate the first term on the right hand side of
(5) from below. The remaining term can be estimated by setting

R
B(o)‘:‘f |B (z, u, uz)| dae (')
and noting that |v—m|<m. Thus we have
~[(v—m)B (x, %, u,)dx > ~—m B(o). (10)

It follows from (5), therefore, that

m*< Const. [(B(o) + K)m+ O] = E<m (11)
(log R/0)*!, a=n.
Since m>1 we obtain finally
o " x<n
m* < Const. (B(g)+1 ’ ' ’ (12)
(Blo) ){(log R/e)*7}, a=n,

valid for 0<g, (Many of the multiplicative factors which appear in the proof are
denoted simply by Const. These factors are usually different from line to line, but
they have this in common: they can be computed explicitly and they are indepen-
dent of ¢.)

LeMMaA 2. The function B(x,u,u;) is integrable over 0<|x|< R, and

o°>, a<n,

?, a=mn.

f |B (, %, u,)| d= < Const. {

Proof. By the Harnack principle (cf. Theorem 7 of [1], and the corresponding
remark in Section 6 of this paper) it is clear that for any fixed ¢ less than o,/4

one has

(1) We shall frequently write j'z instead of Ia<1<b.



224 JAMES SERRIN

max u(z)<C'( min wu(z)+k), (13)

o/2<r< 80 o/2<r<8e

where ¢’ and %' are appropriate constants depending only on the structure of (1).
Clearly

min u{z)<m(o) and m(c)>1,
0/2<r <30

so that (13) implies

max u(zx) < Const. m(g), (0<0,/4).
c/2<r<30

This being established, we now have for o <o,/4,

-4 a

20 20
f (du* "+ fydz < f (d+fustdx

< max w7t ”d +f”rll(a-s)””lﬂl(n—aﬂ)
ogr<2

< Const. 6™ ***m(c)*" 1. (14)
Similarly

20
f ool dz < [lellasa-o 1 |enion e o el
4

< Const. o.(n—¢+¢e)/¢ [o.—l ”u”a + U(n—a)la]a—l’

where we have used Theorem 1 of [1] at the second step; note that the norm |[ful|,
should be taken over the larger set o/2<r<3¢. Since

|[4]l < Const. ¢™* max » < Const. ™*m(s),

there results finally

20
f ¢|u | *dz < Const. 6" ***m(0)* . (15)

(-4

Since |B| <clu,*™ L duE g f and since
fzalBl dz = B(c) — B(20),

it follows from (14), (15), and (12) that (assuming a<n)
B(o)— B(26) < o*(B(o) + 1), (16)

where f is an appropriate constant.
To solve this difference inequality we first rewrite it in the form

(1— B °) B(o) < B "+ B(20).
Put 6=(28)"°. Then for 0<g,
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(1-B0°)1<2, (1-B0o°) 1< exp (280,
and consequently
B(c)<2p0°+exp (286°) - B(20), (6<8).

By successive iteration

B(2*4)<27* +exp (27%)- B(2' *¢)
< 2-ks + exp (2—ks) . 2(1—k)s + exp (2—ks + 2(l—k)e) . B(2(2—k) 6’)

k k

<exp (Z 2""\) . {Z 27 + B(&)}
1 1

< Const. (B(6) +1),

since > 277 < oo. This estimate holds for any k=1,2,..., hence B(c) is uniformly
bounded as ¢—0. That is, B(x,u,u,) is integrable over 0<|z| <R.
To complete the proof for the case a«<n, we observe that

f |B (x, u, u,)| dw = 3 {B(270)— B(2'7 0)} <o (B(0)+1) E 277 = Const. ¢*,
0 1 1

using (16) and the fact that B(oc) is uniformly bounded. If x=n, we obtain in
place of (16)
B(c)— B(20) < 6°(B(c) + 1) (log B/0¢)"* <Const. ¢*% (B(c) + 1)

for some appropriate constant, and the required conclusion follows exactly as before.
This proves the lemma.

We may now return to inequality (12). Since B(c) is uniformly bounded, (12)
implies ‘

(a—n)l(u—l), a<n,

m < Const. { (17)

log R/o, a=mn,

valid for any ¢ <o, In the next section we shall complete the proof of Theorem 1

by showing that a certain reverse inequality is also valid.

2. Completion of the proof
We begin with a result analogous to Lemma 1 of the preceding section.

LeuMa 3. Let O be a strongly (L,) differentiable function with compact support
in |a| < R, which is identically 1 in some meighborhood of the origin. Then

f(@, A+ 0B)dex=Const.= K,

where the constant is independent of the particular chotce of ©.
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Proof. The integral {® Bdzx is well defined in view of Lemma 2. The result then
follows by a repetition of the proof of Lemma 1.

LEMma 4. K>0.

Proof. Suppose for contradiction that K <0. Then for fixed ¢ <o, and m =m(c),

v=9(z, 0), we have from Lemma 3
0> f{v,-A (, u, ;) +v B (2, u,u;)} da

= v,-A(x,v,vrjdx+j

S,

v B (2,v,7,) dx+f m B (z,u, u,)dz, (18)
1 S

where S, ={o<|r|] <R} n {u<m} and 8,={0<|z| < 6} U {u>m}, (this calculation should
be compared with the corresponding one in Section 1),
As in Section 1, (})

vy Az, v,v;) dx>§f|v,]“dx~ C. (19)
Similarly f 7 |B (2, v,v,)dzr < f(cv [o:]** + dv* + vf) da,
and if R is suitably small
Jootde=taa < el < Const. el ol < el
and f drde <ol (cf (7))
Finally, fvf 42 < ||fllanscan +a-m ||¥|les < Comst. ||v]l. < & |[v.][2 + Const.
using Young’s inequality (with the trick). Combining the last four inequalities yields
fs v|B (x, v, v;)|dx <}|[v.||z+ C. (20)

Hence from (18) (19), (20), and the capacity inequality (9), there results easily

o ", a<mn,

B (21)
(log R/o)*™Y, a=n,

m* < Const. [mf B (2, w, u,)| dx + C] {
. 5,

valid for ¢ <g, This should be compared with (11) in Section 1.

(*) Cf. (8). We assume o <2 for simplicity here.
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On the basis of (21) we assert that for some appropriate constant 4>1,

m(o)< A { o, x<m, (22)
(log R/o)*" V", a=n,
where 7= (x—~n)/(x—1) and d=¢/(n—a+e). (!)
Consider first the case ao<m. Since (22) holds trivially for any ¢ such that
m<0"*"®, we need consider only those values of ¢ for which m>¢""®, Let 6 be a
fixed number, to be determined in a moment, and consider the point set

06"’ < 2| < 0,/2.
By application of the Harnack principle, we have for any point = in this set,
u(z) < Const. m(|z|) < Const. |«|*
< Const. 67°6*1~? < Const. 67 m(c) =m(o)

provided 0 is chosen appropriately large (note that (17) was used at the second step
in this chain of inequalities). It follows that the set S, is contained in the union of
the sets

{0<lz|<o}, {0<|r|<00'°}, and {o,/2<lx|<R}.

Since m—>oco as ¢—0, there will be no points of 8, in the last of these sets when
o is small enough, say o<¢,. By making ¢, even smaller, if necessary, the first set
is contained in the second. In summary, then, if ¢, is chosen appropriately small,
the set S, will be contained in {0<|¢|<60'’} whenever o<o, Thus for 6<o,,
making use of Lemma 2,

f |B (%, u, u,)| dz < f , |B (2, u, u,)| dx < Const. o**~?,
Sa r<fol-

Substitution into (21) yields

m* < Const, (m g% "+0~9 4 g%~ ),
Hence after a short calculation (cf. Lemma 2 of [1]),
m < Const. (¢°1~9 + @™/,

Since (x—n)/a>1(1—48), (cf. the footnote below), the assertion follows for ¢<g,.
For o>g0, it is clear that (22) holds for some constant A, whence in all cases (22)
is verified.

(}) In case a<n the assertion requires &<(n—a)/(x—1). This restriction, however, clearly in-
volves no loss of generality.
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Before turning to the case a=n we observe that (22), together with Theorem 11
of [1], implies that the singularity at O is removable. This contradiction of our basic
assumption establishes Lemma 4 in the case a<mn.

We now consider (22) in the case a=n. Since it holds trivially for any ¢ such
that m <(log R/0)'"Y", we may suppose at the outset that m> (log R/c)'"V". Put
y=(log BR/6)*"V". Let 0 be a fixed number, to be determined in a moment, and con-
sider the point set

Re " < 2] < 0,/2.
By application of the Harnack principle, we have for any point z in this set,
u(z) < Const. m(|z]) < Const. log R/|x|
< Const. 8y < Const. Om=m

provided 6 is chosen appropriately small. Thus the set S, is contained in the union

of the sets
{0<jz|<o}, {0<|]<Re '}, and {o,/2<]|z|<R}.

As before, if ¢y is chosen appropriately small the set S, will be contained in
{0 <|o] < R}

whenever o <g,. Thus by Lemma 2,
f B (2, u,u,)|dz < f |B (x, u, u.)| dx < Const. e ~*%v,
Sy r<Re 20V

Substitution into (21) yields
m" < Const. (log R/a)" " (me™*% +1),
whence after a simple calculation
m < Const. (log B/o)' "1/ {yt/n =D g etwitn=D 4 1},

Since the expression in braces is uniformly bounded for 0 <y < oo the assertion fol-
lows for o<o,. For 0>0, it is clear that (22) holds for some constant A, whence
(22) is verified in all cases.

This being shown, it now follows from Theorem 11 of [1] that 0 is again a
removable singularity. But this contradicts our basic assumption, and Lemma 4 is
proved.

Now let M =M(s) denote the maximum value of # on a given circumference
le| =0, (6 < 6,). Our goal is to obtain the important inequality (29), reverse to (17). To
this end we introduce a second auxiliary function V = V(z,¢) according to the formula
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Max (0,u) foro<l|z|<R
V= {Min (M,u) forO0<|t]<o
‘ M at x=0.
Evidently V is strongly differentiable, has compact support in {z| <R, and V=M in
some neighborhood of the origin.
Let o,, (0, <a,), be chosen so that | Z’IB(x, u,%;)|dz <1K; this choice is allowable
by virtue of Lemmas 2 and 4. For fixed o <o,, we define
0 for g, <[2| <R

7" — o3
0 =0(z,0)={ —— foro <l|t| <0,
0 — O3

1 for |z} <o,

where 7= (x—n)/(x—1), (we restrict the discussion to the case a<mn, for simplicity).
Clearly ® is strongly differentiable, has compact support in |z|<R, and ©@=1 in
some neighborhood of the origin. Thus by Lemma 3, Hélder’s inequality, and the

choice of o,,

K= f (0, A+ 0 B)de < ||0a|Allwces, + LK.

Since {|@,][%= wa|z[*"! (6" —63)' %, this yields at once
K'(¢"—ap) < f]AI“"“‘”dx, (23)

where K’ is a positive constant and the integral is to be taken over the set o <|a| <0,

The next problem is to estimate this integral. Since ¢,<g, it is clear that
V=u in the domain of integration. Thus the integral will only be increased if it is
extended over the entire set where ¥V =wu. Denoting this set by A, and using ineguality

(2), we have
f|;4|°"‘°“n dzx < Const. fA {[oa]® + 8Dy + DY g

= Const. fA {([w.|* — 2du* — 2g) + (2d + 6Dy + (2g + V) } dx. (24)
Now by the Hoélder and Sobolev inequalities,

f AR T f (2d + by Yo g

< Const. (”d”nla+ “b”:/l(&——ll))) “V,“:

— Const. (]| -+ [IEED) f ez, (25)
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since V,=u, almost everywhere in A and V,=0 almost everywhere in the complement
of A. Supposing that R is suitably small, (25) implies

f (2d + 67 V)utda < ‘f [we.|*dz.
.\ A
Substituting this into (24), and then using (2), yields
flA[“’(“‘l)dx<Const. (l +f ug - Adx) = Const. (1 + fV, . Adx). (26)
A

Now by Lemma 3

fV,-Adx=MK—fVde<MK+B(O) max 7, 27)

where B(0)= [§|B(z, v, w.)|dv. We assert that
max ¥V < Const. M. (28)

Indeed this is obvious from the definition of V, except in the set o< |z] <R. But by

applying the maximum principle (cf. Theorem 8 below) to w in this set, we find

max u < Const. M;
o<r<R

(application of Theorem 8 requires that the measure of the set ¢ <[z <R be suitably
small, which in turn can be accomplished by choosing R suitably small at the be-
ginning of the proof; note also that M >1, which allows us to absorb the additive
constant appearing in Theorem 8). Inequality (28) now follows from the relation
V =Max (0, w) in o< |t]<R. The required estimate for [|A|*“ Vdz finally results by
combining (26), (27), and (28), thus

ﬁA[“’ @Vdx < Const. M.

Inserting this into (23) yields the estimate
M=>2K"(6"—03), (0>0,),
where K'' is a positive constant. For suitably small ¢ this implies
M>K'"o" ™MD i g<n. (29)
By a similar calculation, which may be omitted here, we find also

M>K"log R/foc if a=mn. (29")
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The required asymptotic behavior of # is a consequence of inequalities (17) and
(29). Indeed by (17) and the Harnack principle we have

M < Const. m < Const. g©* ™/~
valid for o< o, while by (29) and the Harnack principle,
m > Const. M > Const. o™ /-1

valid for all suitably small ¢. Thus (3) holds in a neighborhood of the origin, when

oo <n. The result for c=mn is obtained in the same way, and Theorem 1 is completed.

3. Further results

The conclusion of Theorem 1 may be augmented by several further results con-
cerning the behavior of a solution in the neighborhood of a positive isolated singu-
larity.

TEEOREM 2. Under the hypotheses of Theorem 1, if the singularity at 0 ¢s not
removable, then for all sufficiently small values of o.
G,(az—n)/(u—l), ax<n,

20
f |ue,]*dx < Const.
G (log 1/6)", a=mn.

Proof. According to the argument preceding inequality (15),
20
f |u.|*dx < Const. [o7? ||ull. + ¢ ~®'*}* < Const. o™ *m(c)".
c

The required conclusion then follows from (17).

CoroLLARY 1. We have
u, €Lo_s(8), (S={|x|<R}), (30)

where 6 =n(a—1)/(n—1) and d is any positive number. Moreover, if 0> 1 (i.e.if & >2—1/n)
then u € Wle_a (S).

Proof. By Holder’s inequality and Theorem 2

G&(n—l)l(ac—-l)’ a< n,

o o’(log 1/0)*™%, a=n.

20
f u|?~°d2 < Const. {

Thus by the argument at the close of Lemma 2, |u|?° is integrable over S, and (30)
is proved.
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Now let ¢ be a continuously differentiable function with compact support, and
let S, denote the ball of radius ¢ about 0. Then obviously

f oy, (et =~ ff  ugnds (31)

where n denotes the unit normal to the sphere r=g¢. By Theorem 1
f u¢nd.9 — O(G(a—n)/(¢—1)+n—l)’
and this tends to zero with ¢ when 6>1. Consequently, if 6§>1 we may let ¢ —0 in
(31) to obtain
f(ud;, + du,) dz=0.
Thus %€ Wi_s(S). (In fact, we have shown that u is in W§_s over any proper sub-

domain of D.)

The following result should be compared with Lemma 2.
COROLLARY 2. The function A (x,u,u,) is integrable over 0 <|z| < R, and

c , a<m,

A (z, u, u,)| dz < Const.
fr<a| ( ) dz {a(log 2R/a)*", a=mn.

Proof. According to inequality (2), we have

[Al<alul** +blul"+e.

Now by Holder’s inequality and Theorem 2

20
f [u.|* " da < Const. 7 , a<mn,
’ O'(I()g l/g)n—l, x*£=n,

valid for all sufficiently small o. Moreover, using Theorem 1 and the Lebesgue class
conditions on b and e it is easy to see that

20

(bu*"' + e)dz < Const. ¢.
.

The required conclusion follows from the summation argument at the close of
Lemma 2.
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THEOREM 3. Under the hypotheses of Theorem 1, if the singularity at 0 is not
removable then
div A4 (x, u, u,) — B (z, u, u,) = — K&(0)

in the sense of distributions; that is, for any continuously differentiable function ¢ = $(x)
with compact support in D,

f(% - A+ ¢B)dx = Kd(0). (32)

Proof. Let n be a non-negative smooth function which vanishes outside the ball
8S,, is identically 1 in 8., and elsewhere satisfies 0 <7< 1. We may obviously suppose
that |y,]/<3/0. The function

0 = (1 —n)$ +n$(0)

has compact support in D and is identically equal to ¢(0) in a neighborhood of the
origin. By Lemma 3,

f(®z~ A+ OB)dx = K$(0),
that is

Jta=m e A+ 4B+ 0= rmee A+ 41017z~ K0) (33)
Now both 4 and B are locally summable in D. Hence if ¢—0,
Ja=m @ A+ g8 o> [igo- A+ 4By
Likewise [#Bdx—0, while by Corollary 2 one easily obtains

< Const. 61 7°—0.

U(sﬁ(O) — ). Ad

Thus letting ¢—0 in (33) we obtain (32), and the proof is complete.

Remark. Theorem 3 shows that every solution of (1) with a positive isolated
singularity has the attributes of a fundamental solution, as in the case of linear

equations.

4. Existence of solutions with isolated singularities

The very light hypotheses required for the proof of Theorem 1 do not seem strong

enough to imply the general existence of solutions with isolated singularities. Accord-
16 — 652923. Acta mathematica. 113. Imprimsé le 11 mai 1965,
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ingly, we shall suppose here that (1) is subject to certain further conditions. In par-
ticular, ¢t will be assumed that for any domain D of sufficiently small diameter, the following
two properties hold:

P1. The Dirichlet problem with continuous boundary data is uniquely solvable for any
smoothly bounded domain in D, and the solutions are continuous functions of the data, in

the uniform topology.

P2. Let I' denote a smoothly bounded annular domain in D. By P1 there exists
a solution v in I" assuming the continuous boundary data y, (x) on the outer boundary
and w, (x)+m on the inner boundary. We suppose that at each point P in I, the value
v(P) tends to infinity with m.

These conditions should be compared with the corresponding, but stronger, condi-
tions imposed in [1).

A general discussion of these properties is beyond the scope of the paper. We
may remark, however, that PI is satisfied for a wide variety of equations (including
linear equations), provided that the domains in questions are suitably small. We be-
lieve, moreover, that P2 is a consequence of the general structure of (1). Since a
proof of this apparently involves an effort at least comparable to that of the preced-
ing sections of the paper, we shall rest content here with imposing P2 as an addi-

tional assumption on (1).

THEOREM 4. Let continuous data y(x) be assigned on the boundary of a smooth domain
D, it being assumed that D is small enough so that PI and P2 are valid, and also so that
the maximum principle (Theorem 8) holds.

Let 0 be a point of D. Then there exists a family of solutions G=G(z) in D— {0},
taking on the given boundary values and satisfying

{r(z—n)l(az-l), x<n,
5

logl/r , a=n,

in the neighborhood of 0. The values of G may be assigned arbitrarily at any point P+0
in D, subject only to the restriction G(P)>w(P), where w denotes the unique solution of (1)

tn D which takes on the assigned boundary values.

Proof. This is for the most part a duplication of the proof of Theorem 13 of
[1]. Applications of the (simple) maximum principle must be replaced with continuous
dependence arguments, which may safely be left to the reader. The main difference

lies in guaranteeing that each solution v, is non-negative. Let L denote the minimum
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of w over D. Then each v, has boundary values which are > L. Thus by the maxi-
mum principle we have v,>Const. L —Const., where the coefficient of L may even
be negative. In any case, the functions v, are uniformly bounded below. By making
the change of variables @ =w+ Const., with the constant suitably chosen, it may there-
fore be supposed without loss of generality that v,>0.

5. Linear equations

The results of the preceding sections can be sharpened somewhat in case (1) is
linear, that is, of the form

0 ou ou

a2~ + b, = AN .

. (a” (@) 3 Th@ute (x)) () 5, +d@)ut flz) (34)
Here it is assumed that the coefficients a;;(z) are bounded measurable functions satis-

fying the ellipticity condition
ayE &= A8, A=Const.>0,

and that the coefficients b, through f fall into the Lebesgue classes
b, ¢ e, €Ly a0y 4, fE€Lya-se-

The various conditions (2) are easily seen to be met with «=2, and it follows that
Theorems 1 through 3 hold for (34), again with a=2.

Now let M denote the class of smoothly bounded domains D such |D|<D,, D,
being the constant in Theorem 8. We assert that properties PI and P2 hold for any
domain D of class M.

Indeed, the uniqueness and continuous dependence of solutions of the Dirichlet
problem is a direet consequence of Theorem 8 applied to the difference of two solu-
tions. The existence of solutions is naturally a more difficult matter. For smooth data,
the result can be obtained (in outline) by first smoothing the coefficients, then show-
ing that the solution (known to exist by the classical Schauder theory) is uniformly
continuous in the closure of the domain in question (this involves the usual straight-
ening of the boundary), and finally tending to a limit. When the data is only con-
tinuous, existence can be obtained by a standard approximation process based on the
existence theorem for smooth data. An alternate discussion based on functional analysis
is given in reference [3]. Property P2 is obvious, by the superposition property of
linear equations.

This being the case, it follows that for any domain D in the class M there
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exists a family of solutions of (34) which satisfies the conclusion of Theorem 4. In
addition, we have the following supplementary results, in which (34), refers to equation
(34) with ¢;=f=0.

THEOREM 5. Let G be a particular solution of (34), in the set D—{0}, such that
G ~r*"" or G~log 1/r near 0, depending on whether n>2 or n=_2. Then every solution of
(34) in D—{0} which in the neighborhood of 0 is bounded below by a multiple of ™", or
log 1/7, has the form
% =Const. G+ w,

where w s a solution of (34) in the entire domain D.

Proof. This result is an analogue of Theorem 5 of [4]. It is clearly enough to
carry out the proof when D is in the class M. This being the case, we may suppose
by virtue of property PI that both » and G are zero on the boundary of D, and
that e,;=f=0. Moreover, by adding a suitable multiple of G to % it can be assumed
without loss of generality that >0 near 0.

Under these assumptions it follows from Theorem 8 that both # and G are non-
negative in D. The proof of Theorem 5, reference [4], can now be taken over almost

word for word (and indeed even simplifies a bit).

Remark. In view of Theorem 5, the family of solutions given by Theorem 4 is

unique and depends continuously on a single multiplicative parameter.

The following result is a slight generalization of Theorem 5 in that the existence

of a solution G is not required.

THEOREM 6. Let u be a continuous solution of (34) in the set D — {0}, which in the
neighborhood of 0 is bounded below by a multiple of r* ™, or log 1/r. Then either u has a
removable singularity at 0, or else (possibly after multiplication by —1)

., n>2,
U
log 1/r, n=2,
tn the neighborhood of the origin.
Proof. Let D' be a suitably small neighborhood of the origin. Then there exists

a solution G of (34), in the set D’ — {0}, such that G ~r*>"" or G ~log 1/r. Consequently,

by Theorem 5,
u=Const. G +w

in the set D’'—{0}, and the conclusion follows at once.
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6. Corrections and additions to reference [1]
1. As they are stated, Theorems 3, 4, 3', and 4’ of [1] are valid only in case

M =0. The correct versions of Theorems 3 and 4 are as follows:

THEEOREM 7. Let u be a weak solution of (1) in a domain D < Q. Suppose that u< M
on the boundary of D, and that conditions (2) hold. Then

max u< M +C'|M|+ C{|D| ™ ||ill., o + &}, (@ =Max (0, u—M)),
where C, O, and k depend only on the structure of (1). In particular
k=Dl Al + (DI lglf

while C' tends to zero as ||d|| tends to zero.

TrEorREM 8 (Maximum vprinciple). Let w satisfy the hypotheses of Theorem 7. Then
there exists a constant Dy, depending only on the structure of equation (1), such that if
[D|< D, then

max u< M+ C'| M|+ Ck.

Proof of Theorems 7 and 8. The error in the original proof came in asserting the
general validity of (25) on page 262. When M =0, k>0, howewer, (25) holds in the set
u=>¢, and the proof as given is correct. The case M =0, k=0 may then be obtained

by a trivial approximation argument. Thus, if M =0, we have shown that
max u< C(|D| Y ||ifly, » + &), (&=Max (0, u)), (35)
or in the case of Theorem 8,
max u < Ck. (36)

The general result can be obtained by applying (35) and (36) to the new de-
pendent variable u*=wu— M. This change affects the structure of (1) by replacing f
and g respectively with

fH2IM* N, g+ 227 M.
Hence k& must be replaced in (35) and (36) by
D™ |+ 2 b= a4 (D g + 2+ e,
The latter expression is easily seen to be less than
Const. k+ C' | M|,

where C’ tends to zero as |D|" ||d|| tends to zero. This completes the proof.
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Theorems 3’ and 4’ are corrected in a similar way. We may omit the details.
Theorem 3 was not used in [1], and Theorem 4 was applied only at one point
on page 278. Here the inequality

u(x) > M]n (,uv, ,uv+1) - Ck
must be replaced by

u(x) = (]' - C’) Min (Hw ‘uv+ l) - Ok:

according to Theorem 8. For sufficiently large » we have "<}, and the conclusion
u—>oco as x—0 follows as before.

We note that the maximum principles above can be given wider validity in several
directions. First, the results clearly apply not only to the equation div 4 =B, but also
to the differential inequality div 4 > B. More generally, if

div A(x, u, u.) > Blx, u, u;)

whenever « > M, then Theorems 7 and 8 hold for all M > M, This result has particular
application to the linear equation (34) when the coefficient d is non-negative and M >0.
Indeed, in this case it is clear that we may omit the term C’[M| in the conclusions of
Theorems 7 and 8, and moreover neglect ||d|| in the determination of the constants C
and D,

Also, the maximum principle holds for all exponents « in the range l1<a< oo,
assuming for o>n that b,e€ L, ,-1), c€L,, and d,f,g€L,. This extension requires no

essentially new ideas in the proofs already given.

2. The phrasing of Theorem 7 of [1] does not indicate the specific dependence
of the coefficient ¢’ on the domains D and D’. It is therefore worth pointing out
that this dependence is completely expressed by a single number N, the number of
spheres (of radius<1) required for the chaining argument. In particular, for pairs of
domains D, D' and D, D' which are geometrically similar and both contained in a
bounded subset of ), it may be assumed that the corresponding constants ¢’ and "
are the same. This fact plays an important part in our various applications of the

Harnack principle over annular regions (cf., for example, the proof of Lemma 2).

3. In the same way, Theorem 8 of [1] is not stated in as sharp a form as could

be desired. The following version is preferable.

THEOREM 9. Let u be a weak solution of (1) in a domain D< Q. Then u is (essenti-

ally) Hélder continuous in D. Moreover, if [u|< L then for z, y€D
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_
u@) — wiy)| < HL+ k) [

3

where H and A depend only on the structure of (1), and R is the maximum distance of x or
y to the boundary of D, (or R=1 if this is smaller).

To see this, it is enough to replace the final sentence of the original proof by
the following argument:

Let = be the point further from the boundary of D. If |x —y| <2 ¥*P**R, then by
inequality (48)

A
Ju(z) — u(y)| < C(L+ k) l%” [ :

On the other hand, if |v—y|>2 ¥*P*R, then since |u|<L we have

Ju(z) —u(y)|<2L<CL

x—yr
R
This completes the proof.

4. We observe (without proof) that assumption (8) in Chapter I of [1] can be
replaced by the weaker condition (7). Condition (8), is required, however in Chapters II
and 1If. Finally, though we shall not carry out the details, one can show that the
hypothesis of Theorem 1 of the present paper can we weakened slightly to read

b,e€ Lnl(oc~1); c€ Ln/(l—s); d.f, g€ Ln/(a:—-s),

exeept that for e=mn we require b € Ly 14
5. One further reference should be included in the bibliography of [1], namely

GEVREY, M., Sur certaines propriétés des fonctions harmoniques et leur exten-
sion aux équations aux dérivées partielles C. R. Acad. Sci. Paris, 183 (1926),
546-548.

In this paper there occurs for the first time a removable singularity theorem of inter-

polatory type for solutions of elliptic equations.

Note: This work was partially supported by the United States Air Force Office of
Scientific Research under Grant No. AF-AFOSR-63-373.
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