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In  a previous paper  in this journal [1] we have studied the local behavior of 

solutions of non-linear second order partial  differential equations having the form 

div A (x, u, u~) = B (x, u, u~). (1) 

Here ~ is a given vector function of the variables x, u, ux, B is a given scalar func- 

tion of the same variables, and u x = ( ~ u / ~ x l  . . . . .  ~u /Dxn)  denotes the gradient of the 

dependent variable u =  u(x), where x = (x 1 . . . . .  x=). The final chapter of [1] t reated a 

var iety of problems concerning the behavior of solutions at  an isolated singularity. In  

tha t  chapter I found it necessary to impose the condition B-~0, a condition which had 

not been required in the preceding parts  of [1]. The main purpose of the present paper  

is to show tha t  this additional condition can be removed, and thus to complete, in an 

important  way, the theory of the earlier paper. 

We assume as always that  the functions Jd and B are defined for all points x in 

some connected open set (domain) ~ of the Euclidean number  space E n, and for all 

va lues  of u and ux. Furthermore, they are to satisfy inequalities of the general form 

IA (~, ~,p)l < ~lpl ~-~ + bill ~-~ + 
I~ (X, U, p)[ < C]pl ~-1 -[- d]ul ~-1 "4- / (2) 

p-A(~,~,p)>~lpl ~ -d l@-g ,  

where the exponent ~ is a fixed number  in the range 1 < ~ ~< n, the coefficient a is a 

positive real number, and the coefficients b through g are measurable functions of x 

contained in the respective Lebesgue classes 

b, e E Zn/(a_ l_e); C E L,~/(1-~); d,/,  g E Ln/(~-~), 
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where e > 0 ,  (if g < n ,  the Lebesgue class of b can be weakened to Ln/(~-l)). We shall 

then prove the following result, generalizing Theorem 12 of [1] to the case of a non- 

vanishing right hand side B (x, u, u~). 

TH~.OI~.M 1. Let u be a continuous solution o/ (1) in the set D - ( 0 } ,  where D 

is a domain in ~ .  Suppose that u >~ L /or some constant L. Then either u has a remov- 

able singularity at O, or else 

( r (~-  n)/(a~-l), ~ ~: n ,  

u ~ (3)  
log 1/r, ~ = n, 

in the neighborhood o~ the origin. (Here / ~ g means that C' < / /g  <<- C", where C' and C" 

are positive constants.) 

This result applies in particular to solutions of the variational problem 

~j~'(x, u, u=) d x  = O, 

provided the integrand obeys certain natural conditions (of. [2]). In the case of qua- 

dratic variational problems, for example, Theorem 1 implies tha t  the order of growth 

at a positive isolated singularity is r 2-" or log I /r ,  depending on whether n > 2  or 

n=2 .  Earlier results of a similar nature are noted in the introductory paragraphs 

of [1]. 

Theorem 1 is proved in the following two sections. In contrast with the simple 

statement of the theorem, the intricacy of the proof comes as something of a sur- 

prise, lending its own interest to the result. The method of proof furthermore shows 

that  a solution with a positive isolated singularity has certain of the attributes of a 

/undamental solution (cf. Theorem 3). In Section 4 we show under suitable conditions 

that  there exists a solution of (1) with precisely the asymptotic behavior (3). This 

result is a generalization of Theorem 13 of [1], both in the equation treated and in 

the weaker structure required. For linear equations 

~x,O ( OUvx, ) OUc,~ x, a , j : - -+ btu + e, = + du +/  (4) 

it is possible to obtain somewhat more detailed conclusions. In Section 5 we consider 

two results generalizing Theorems 14 and 15 of reference [1]. Although we shall not 

present the details here, it is also worth noting that  the results of the paper may 

be used to construct a Green's function G(x,y) for (4), having the usual properties 
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of positivity and symmetry, and yelding a representation formula for solutions of the 

Diriehlet problem with zero boundary data. 

The final section of the paper is more  o r  ~ . . . .  ~|~r to the earlier part. Here 

we take the opportunity to correct a n  error in [1] occurring fia tJa~: ~ t  and 

proof of the maximum principle. We also point out several places in [1] where the 

results can be slightly improved. 

I t  is assumed throughout tha t  the reader is familiar with Chapters I and I I  of 

[1]. Moreover, the notation and terminology of that  paper will be used as needed. 

In  particular, we recall tha t  a continuous solution of (1) in a domain D is a function 

u which is continuous and has strong derivatives which are locally of class L~ over 

D, and is such tha t  

~(r +r =0 A dx 

for any continously differentiable function ~b =~(x)  with compact support in D. 

1. Proof of Theorem 1. First Part 

We shall assume that  the singularity at 0 is not removable. To prove the theo- 

rem it must therefore be shown that  u has the asymptotic behavior (3) in  the neigh- 

borhood of the origin. We shall restrict our discussion, in fact, to the ban s = {]xl < R} 

in D, where R is chosen so that  the Lebesgue norms [Ibll, IIcI[, and I[dII over S are 

suitably small (how small will be determined in the course of  th~ l~a~ ,  la~t~ in any 

case will depend only on ~, n, and e). I t  may be assumed without less of generality 

tha t  u < 0 on the circumference Ix/= R; indeed, if this is not  already the case, it  can 

be accomplished simply by the subtraction of a suitable constant from u, a device 

which affects the structure of (1) only by increasing the relatively unimportant  coef- 

ficients e , / ,  and g. 

L~.MMA 1. Let 0 be a stongly (L=) differentiable function with compact support in 

[x I < R, which is identically 1 in some neighborhood o/ the origin. Then 

f{O~ + ( 0 - 1 ) ~ }  = Co.st. = iT, A dx 

where the constant is independent of the particular choice of O. 

Proof. Let  0 and ~ be two functions satisfying the conditions of the lemma. 

.Then r  has compact support in 0 <  Ixl < R ,  and 
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f { ( ~ -  A + (~i- O) dx = 0. 0), .  

Since 0 ~ - 1  nea r  0 th is  can be rewr i t t en  

+ 11 = A + (O-  1) ~}dx, 

prov ing  the  lemma.  

Since we have  assumed  t h a t  the  s ingula r i ty  a t  0 is not removable ,  i t  is clear  

f rom the  r e m a r k  on page  278 of [1] t h a t  u -+ r as x -+ 0. Hence  there  exis ts  a cons tan t  

a 0 such t h a t  u ~> 1 for 0 < Ix] <~ do. Le t  ra = re(a) denote  the  m i n i m u m  of u on a g iven  

sphere Ix] = a, (a ~< a0). F o r  a ~< Ix] ~< R le t  us define 

0 ifu(x)~<0 

v = v ( x , a ) =  u if O < u ( x ) < m  

m i f u ( x ) ~ m .  

We suppose the  def ini t ion of v to  be e x t e n d e d  to the  ent i re  bal l  S b y  se t t ing  v ~ m  

when Ixl<~a. Then  v is a s t rong ly  di f ferent iable  func t ion  wi th  compac t  suppo r t  in 

Ix] < R, and  is iden t ica l ly  equal  to  m in a ne ighborhood  of the  origin. 

Thus  for  f ixed  a~<a0, and  m = m ( a ) ,  v = v ( x , a ) ,  we have  b y  L e m m a  1, 

({v=- A (x, u, u=) + (v- m) Y (x, u, u=)} m K  dx 

(5) 
= f{v=.A(x,v,v=)+(v-m)B(x,u,u=)idx, 

since v = u a n d  vz -- u~ a lmos t  everywhere  in the  set where  vx + 0. Now using i nequa l i t y  (2), 

f v=. A(x,v,v=)dx>~ f ([v=i=-dv'-a)dx. (6) 

The  second t e rm  on the  r igh t  m a y  be  e s t ima ted  b y  the  H61der a n d  Sobolev  inequal-  

it ies,  thus  (1) 

f~=d~  < I1~11~ II~ll:. < Co~t. Ildll. I1~=11:. (7) /x 

The rad ius  R in t roduced  a t  the  beginning of the  proof  can be chosen so smal l  t h a t  

t he  coefficient of Hv:}l~ is ~<~. Hence  b y  (6) and  (7) 

(1) This calcnlation is given for the case ~ < n. If ~ = n only slight changes are necessary. 
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V, 

where C is an appropriate constant. Moreover, by Lemmas 9 and 10 of [1], since 

v=--m for Ix 1~<o. 

[ n  o~\ ~-1 
f l -- I ~n-~, 

(log R/o)  t-", o~ = n. 

Inequalities (8) and (9) serve to estimate the first term on the right hand side of 

(5) from below. The remaining term can be estimated by setting 

B(o)-- f [ lB (x, u, . )ldx (') 

and noting that  Iv-m] ~ m. Thus we have 

f ( v  m) (x,u, ux) roB(o). (10) B dx >~ 

I t  follows from (5), therefore, that  

6 g < n ,  
m~< Const. [ (B(o)+K)m+C]~ ' . . (11) 

[ (log R / a )  n-~, ot = n. 

Since m~> 1 we obtain finally 

/ a~-"' " (12) m~-l~< Const. (B(a) + 1) ( (log R/a)  n-l, a=n ,  

valid for o~< %. (Many of the multiplicative factors which appear in the proof are 

denoted simply by Const. These factors are usually different from line to line, but  

they have this in common: they can be computed explicitly and they are indepen- 

dent of 0.) 

LrM~A 2. The /unction B (x, u, u~) is integrable over 0 < Ixl <~ R, and 

f ,B(x ,u ,u , ) ldx<Cons t . {a  +, ~<n ,  
r < o  0el2~ O~ = n .  

Proof. By the Harnaek principle (cf. Theorem 7 of [1], and the corresponding 

remark in Section 6 of this paper) it is clear tha t  for any fixed o less than %/4  

one has 

(1) Wo shall frequently writo Sba instead of Sa<r<b. 
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(1-~a")-1~<2,  ( 1 - f l d ) - l <  exp (2~a"), 

and consequently 

B(a) ~<2~a~+exp (2fla ~).B(2a), (a~<~). 

By successive iteration 

B(2 -k ~) < 2 -k~ + exp (2-k") �9 B(21-k ~) 

~< 2 -k~ + exp (2-k~) �9 2 (1-k)~ + exp (2 -k~ + 2(1-k)~)  �9 B(2 (~-k) ~) 

< Const. (B(e) + 1), 

since ~2-s~<c~ .  This estimate holds for any k = I , 2  . . . . .  hence B ( a ) i s  uniformly 

bounded as 0->0. That  is, B (x, u, ux) is integrable over 0 < Ix] ~< R. 

To complete the proof for the case ~<  n, we observe that  

[~ (x, u, ux)l dx = ~ {B(2 -j a) - B(21-j a)} < ~ a~(B(O) + 1) ~ 2 -j" -- (?out .  d ,  
1 1 

using (16) and the fact tha t  B(a) is uniformly bounded. If o~=n, we obtain in 

place of (16) 

B(a) - B(2a) <~ fl a"(B(a) + 1) (log R/a)  "-1 <~ Const. a ~/~ (B(a) + I) 

for some appropriate constant, and the required conclusion follows exactly as before. 

This proves the lemma. 

We may now return to inequality {12). Since B( a ) i s  uniformly bounded, (12) 

implies 

I a  (~-n)/(~-l), ~ < n ,  (17) 
m ~< Const. ( log R/q ,  o~ = n, 

valid for any a <. ao. In the next  section we shall complete the proof of Theorem 1 

by showing that  a certain reverse inequality is also valid. 

2. Completion of the woof 

We begin with a result analogous to Lemma 1 of the preceding section. 

LEMI~IA 3. Let 1~ be a strongly (L~) dif/erentiable /u~ction with compact support 

in Ixl < R, which is iden$icaUy 1 in some neighborhood o] She origin. Then 

f ( (~ x " ~4 + 0 d x = Const. = B) K, 

where the constant is independen$ o/ the particular choice o] ~.  
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Proo/. The integral S (9 ]~ dx is well defined in view of Lemma 2. The result then 

follows by a repetition of the proof of Lemma 1. 

LEMMA 4. K > 0 .  

Proo/. Suppose for contradiction that  K ~< 0. Then for fixed a ~ ~0, and m = re(a), 

v=v(x ,a ) ,  we have from Lemma 3 

f {vx" A (x, u, u~) + v • (x, u, ux)} 0 /> dx 

where S, = {a ~< Ix[ < R} N {u < m} and S 2 = {0 < Ixl < a} U {u ~> m}, (this calculation should 

be compared with the corresponding one in Section 1). 

As in Section 1, (1) 

f vx . A (x, v, vx) dx >~ I f lv~l~ dx-- C. (19) 

Similarly f ~ v lB ( x, v, v~) dx < f ( cv fv~l~-l + d r  + v/) dx, 

and if R is suitably small 

fcvlv~l ~-, < Ilcll. I1~11~. Jl,~ll: -1 ~< Ilclln II~zlJ: ~< ~ IIv2:, dx Const. 

f and jdv (cf. (7)). 

Finally, f,/dx <~ II/11~-/(~-+~-~)I[vH~ * ~< Const. I[v, ll, < ~ Ilvzll: + Const. 

using Young's inequality (with the trick). Combining the last four inequalities yields 

z 

Hence from (18) (19), (20), and the capacity inequality (9), there results easily 

f I G~-n' m~ ~< Const. [m IB(x,u,  ux)ldx+C] ~r (21) 
s, [ (log R/(r) ~-1, o~ = n, 

valid for a<~ao. This should be compared with (11) in Section 1. 

(1) Cf. (8). W e  a s s u m e  ~ < n fo r  s imp l i c i t y  here .  
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On the  basis of (21) we assert  t h a t  for  some appropr ia te  cons tant  A ~> l ,  

I a m  -~)' ~ < n, (22) 
re(a) < A [ (log R / a )  I-IIn, ~ = n, 

where ~: = (~z - n)/(o~ - 1) and  (5 = s a n  - o~ + ~). (1) 

Consider first  the  case a < n .  Since (22) holds t r ivia l ly  for  any  a such t h a t  

m ~< a ~(1-~), we need consider only  those values  of a for  which m > a ~a-o). Le t  0 be a 

f ixed number ,  to be de termined in a moment ,  and  consider t h e  poin t  set  

0 0  "1-8 ~ IX I < 0"0/2. 

B y  appl icat ion of the  H a r n a e k  principle,  we have  for any  poin t  x in this set, 

u(x) < Const. m(]x[) • Const. Ixl ~ 

Const. 0~0" ~a-~) < Const. O~ m(a)  = re(a) 

provided  0 is chosen appropr ia te ly  large (note t h a t  (17) was used a t  the  second step 

in this chain of inequalities). I t  follows t h a t  the  set S~ is contained in the  union of 

the  sets 

{0 < < o}, {0 < Ixl < 0 and  {0.0/2 < < R}. 

Since m-->c~ as a->0,  there  will be  no points  of S~ in the  last  of these sets when  

is small  enough, say 0"~< %. B y  mak ing  ~1 even smaller, if necessary,  the  first  set  

is conta ined in the  second. I n  summary ,  then,  if ~1 is chosen appropr ia te ly  small,  

the s e t  S 3 will be contained in { 0 < l x l < 0 0 "  1-~} whenever  ~ < ~ 1 .  Thus  for o~<~ 1, 

mak ing  use of L e m m a  2, 

Subst i tu t ion into (21) yields 

m ~ ~< Const.  (m a ~- n +m-t) + a~- n). 

Hence  af ter  a shor t  calculat ion (cf. L e m m a  2 of [1]), 

m < C o n s t .  ((~(1-6) _~ 0.(a-n)[r 

Since ( a - n ) / ~ > ~ T ( 1 - ~ ) ,  (cf. the  footnote  below), the  assert ion follows for a~<al  . 

For  a > a  I i t  is clear t h a t  (22) holds for some cons tan t  A, whence in all cases (22) 

is verified. 

(1) I n  case ~ < n  the  assertion requires ~ ~< (n-~)/(~r This restriction,  however,  clearly in- 
volves  no loss of generali ty.  
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Before turning to the case ~ = n  we observe tha t  (22), together with Theorem 11 

of [1], implies tha t  the singularity a t  0 is removable. This contradiction of our basic 

assumption establishes Lemma 4 in the case ~ < n. 

We now consider (22) in the case ~ = n. Since it  holds trivially for any  ~ such 

tha t  m ~ (log R/a)  1-1/n, we may  suppose a t  the outset tha t  m > (log R/a)  1-11~. Put  

y =  (log R/a)  1-11n. Let  0 be a fixed number,  to be determined in a moment,  and con- 

sider the point set 
Re- < <  o/2. 

By application of the Harnack  principle, we have for any  point x in this set, 

< Const. m(l*l) < Const. log R/l*l 

Const. 0 y < Const. 0 m = m 

provided 0 is chosen appropriately small. Thus the set S s is contained in the union 

of the sets 

(0 < Ixl < a},  (0  < Ixl < R~-~ '} ,  and {o'0/2 < Ix] < R}. 

As before, if ~i is chosen appropriately small the set Ss will be contained in 

{0 < < n c  2~ 

whenever a ~<~r Thus b y  Lemma 2, 

Substitution into (21) yields 

m" ~< Coast. (log R/a)  "-1 (me -'~ + 1), 

whence after a simple calculation 

m ~< Const. (log R /a )  1-1/" {yl/(n-1)e-~~162 + 1}. 

Since the expression in braces is uniformly bounded for 0 ~<y < co the assertion fol- 

lows for a~<# 1. For ~ > a  I it is clear tha t  (22) holds for some constant .4, whence 

(22) is verified in all cases. 

This being shown, it  now follows from Theorem 11 of [1] tha t  0 is again a 

removable singularity. But  this contradicts our basic assumption, and I ~ m m a  4 is 

proved. 

Now let M = M ( a )  denote the maximum value of u on a given circnmference 

Ixl = a, (a ~< %). Our goal is to obtain the important  inequality (29), reverse to (17). To 

this end we introduce a second auxiliary function V ~ V(x, cr) according to the formula 
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Max (0,u) for (7 < Ix I < R 

V=l~ ln (M,u )  forO<[x[<aat x = 0 .  

Evidently V is strongly differentiable, has compact support in Ix[ < R ,  and V-~M in 

some neighborhood of the origin. 

Let  (72, ((72 "-<(70), be chosen so that  I:'IB(~,~,~)Id~<-~K; this choice is allowable 

by virtue of Lemmas 2 and 4. For fixed (7< (7~, we define 

0 

r~-4  
0 = 0 (z , (7 )=  ( 7 ~ - 4  

1 

for (Tz < Ix[ < R 

for (7 ~< Ix] < (7~ 

f o r  Ix] < (7, 

where T = (r (we restrict the discussion to the case :c<n, for simplicity). 

Clearly O is strongly differentiable, has compact support in Ixl < R, and ~)~1  in 

some neighborhood of the origin. Thus by Lemma 3, HSlder's inequality, and the 

choice of a2, 
t b  

K = j ( o x -  A + 0 3)d~ < IIOzll~llAIl~,,~-l)+ IK.  

0 r162 r  Since [I xl[==~oniz[~-i(a ~-a~ ,  , this yields at once 

(23) 

where K '  is a positive constant and the integral is to be taken over the set (7 ~< Ix[ ~< (72. 

The next  problem is to estimate this integral. Since (7~<(70, it  is clear that  

V-~u in the domain of integration. Thus the integral will only be increased if it is 

extended over the entire set where V = u. Denoting this set by  A, and using inequality 

(2), we have 

= Const. f (([uzl~-2du~-2g)+(2d+b~l(~-:))u~+(2g+e~/(~-~))}dx. (24) 
J A 

N o w b y  the HSlder and Sobolev inequalities, 

fa(2d + b~'(:'-l)) u~ dx <~ f (ud + b~"~ V~ dx 

~< Const. (lidlln,~ + ~ ~"(~-"' V ~ 

= Coast (lldll.,~ + I l b l b ,  1,) (25) 
3 A 
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since V~ = ux almost everywhere in A and Vz = 0 almost everywhere in the complement 

of A. Supposing that  R is suitably smaU, (25) implies 

f A(2d + b"(~-') u'dx < f A [u~[~dx. 

Substituting this into (24), and then using (2), yields 

). 
Now by Lemma 3 

f Vx" Adx-- M K -  f VBdx<-<MK + B(O) max V, (27) 

where B(0)= $2 IB(~, u, uz)ld~. We assert that 

max V~< Const. M. (28) 

Indeed this is obvious from the definition of V, except in the set a <  Ix] d R .  But  by 

applying the maximum principle (ef. Theorem 8 below) to u in this set, we find 

max u < Const. M; 

(application of Theorem 8 requires that  the measure of the set a <  Ix] ~<R be suitably 

small, which in turn can be accomplished by choosing R suitably small a t  the be- 

ginning of the proof; note also that  M~> 1, which allows us to absorb the additive 

constant appearing in Theorem 8). Inequality (28) now follows from the relation 

V=Max  (0, u) in a<~ ]xl<~R. The required estimate for .fl.,4]~'l("-l)dx finally results by 

combining (26), (27), and (28), thus 

f [A[:'l(~-l)dx <.< Const. M. 

Inserting this into (23) yields the estimate 

M/> 2K"(a ~ -  a~), (a > ~2), 

where K'" is a positive constant. For suitably small a this implies 

M>~K"a <~'-n)l(~ if ~ < n .  (29) 

By a similar calculation, which may be omitted here, we find also 

M>~K"logR/a if a = n .  (29') 



ISOLATED SINGULARITIES O1~ SOLUTIONS OF QUASI-LINEAR EQUATIONS 2 3 1  

The required asymptotic behavior of u is a consequence of inequalities (17)and 

(29). Indeed by (17) and the Harnack principle we have 

M < Const. m ~< Const. a (~- n)](~-l) 

va~id for a~< a0, while by (29) and the I tarnack principle, 

m >/Const. M >/Const. a(~-,)/(=-l) 

valid for all suitably small a. Thus (3) holds in a neighborhood of the origin, when 

< n. The result for a = n is obtained in the same way, and Theorem 1 is completed. 

3. Further results 

The conclusion of Theorem 1 may be augmented by  several further results con- 

cerning the behavior of a solution in the neighborhood of a positive isolated singu. 

larity. 

T~EOREM 2. Under the hypotheses o/ Theorem 1, i/  the singularity at 0 is not 

removable, then ]or all su]]iciently small values o] a. 

f~ a I O'(ar n)/(a:-l) ~ ~ n,  
luxl=dx < Const. [ (log l /a )" ,  a = n. 

Proo[. According to the argument preceding inequahty (15), 

f~a ]Ux[ ~d~ < [ O*-1 IlulI= + ~("-=)'=r < Const. ~" "re(o) = Const. 

The required conclusion then follows from (17). 

COROLLARY 1. We have 

us e L~_~ (S), (S = {]~1 < R}), (30) 

where 0 = n(o~ - 1 ) / ( n -  1) and O is any positive number. Moreover, i / 0  > 1 (i.e. i /  a > 2 - 1 /n)  

then u e W~-o (S). 

Proo[. By HSlder's inequality and Theorem 2 

[u~F~d~ < C o n s t . . ~ ( l o g  1 / . )  "-~, ~ = n .  

Thus by the argument at the close of Lemma 2, lull ~ is integrable over S, and (30) 

is proved. 
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Now let ~ be a continuously differentiable function with compact support,  and 

let Sa denote the ball of radius a about  0. Then obviously 

- <3 1 

where n denotes the unit normal to the sphere r = a. By  Theorem 1 

f rouCnd ~ = O(a<~-.)/<~-l)+ . -1 ) ,  

and this tends to zero with ~ when 0 > 1. Consequently, if 0 > 1 we may  let ~ - +  0 in 

(31) to obtain 

/ ( ~ r  + dx = 0. Cu=) 

Thus u E WI_o (S). (In fact, we have shown tha t  u is in W~-6 over any proper sub- 

domain of D.) 

The following result should be compared with Lemma 2. 

COROLLARY 2. The/unction t4 (x, u, ux) is integrable over 0 < Ixl ~ R, and 

f ,~4(x,u, ux),dx<~Const.{a , :r 
r<o a(log 2R/a) n-l, a = n .  

Proo[. According to inequality (2), we have 

I.~4] ~ a ]uzl~-l -{- b ]uJa-l + e. 

Now by  H61der's inequality and Theorem 2 

{u:[ dx <~ Const. 
a(log 1/a) "- 1, o~ = n, 

valid for all sufficiently small a. Moreover, using Theorem 1 and the Lebesgue class 

conditions on b and e it is easy to see tha t  

y~ a(bu'-I -~ dx <. Const. s ft. 

The required conclusion follows from the summation argument  a t  the close of 

Lemma 2. 
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THEOREM 3. Under the hypotheses o/ Theorem 1, i/ the singularity at 0 is not 

removable then 

div A (x, u, ux) - B (x, u, ux) = - K~(O) 

in the sense o] distributions; that is, /or any continuously di//erentiable /unction 4 = 4(x) 

with compact support in D, 

/(4~" A + dx = K4(O). (32) 

Proo[. Let ~ be a non-negative smooth function which vanishes outside the ball 

S., is identically 1 in S./2, and elsewhere satisfies 0 ~< ~7 ~< 1. We may obviously suppose 

that  Iv/xl ~< 3/a. The function 

o = (t - ~ )4  + ~4(0) 

has compact support in D and is identically equal to 4(0) in a neighborhood of the 

origin. By Lemma 3, 

f (o." .,4 + OR) dx = K4(0), 

that  is 

f{(1 ~)(4x. 4B) (4(0) 4)~/x" 4( 0)~B} K4(0). (33) A + + A + dx 

Now both • and B are locally summable in D. Hence if a->0, 

f ( 1 - , )  A + A + 4S) d~. 

Likewise S~Bdx--~O, whi]e by Corollary 2 one easily obtains 

f ( 4( O ) - 4 ) ~x . Adx l ~ Const. at-~-->0. 

Thus letting a-->0 in (33) we obtain (32), and the proof is complete. 

Remark. Theorem 3 shows that  every solution of (1) with a positive isolated 

singularity has the attributes of a fundamental solution, as in the case of linear 

equations. 

4. Ex i s t ence  o f  so lut ions  w i t h  i so lated s ingular i t ies  

The very light hypotheses required for the proof of Theorem 1 do not seem strong 

enough to imply the general existence of solutions with isolated singularities. Accord- 

16- 652923. Acta mathematica. 113. Imprim~ le 11 mai 1965. 
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ingly, we shall suppose here tha t  (1) is subject to certain further conditions. In  par- 

ticular, it will be assumed that/or any domain D o/su//iciently small diameter, the/oUowing 

two properties hold: 

P1. The Dirichlet problem with continuous boundary data is uniquely solvable ]or any 

smoothly bounded domain in D, and the solutions are continuous /unctions o/ the data, in 

the uni]orm topology. 

P2. Let F denote a smoothly bounded annular domain in D. By P1 there exists 

a solution v in P assuming the continuous boundary data v/0 (x) on the outer boundary 

and ~/)1 (X) @ m on the inner boundary. We suppose that at each point P in F, the value 

v(P) tends to infinity urith m. 

These conditions should be compared with the corresponding, but  stronger, condi- 

tions imposed in [1]. 

A general discussion of these properties is beyond the scope of the paper. We 

may remark, however, tha t  P1 is satisfied for a wide variety of equations (including 

linear equations), provided that  the domains in questions are suitably small. We be- 

lieve, moreover, tha t  P2 is a consequence of the general structure of (1). Since a 

proof of this apparently involves an effort at  least comparable to tha t  of the preced- 

ing sections of the paper, we shall rest content here with imposing P2 as an addi- 

tional assumption on (1). 

T ~ o a ~ M  4. Let continuous data y~(x) be assigned on the boundary o/ a smooth domain 

D, it being assumed that D is small enouqh so that P1 and t)2 are valid, and also so that 

the maximum principle (Theorem 8) holds. 

Let 0 be a point o/ D. Then there exists a ]amily o[ aolutions G = G(x) in D -  (0), 

talcing on the given boundary values and satis/ying 

r r (~- n)l(~- 1) 6r 
G~llogJ 1/r , 

in the neighborhood o/ O. The values o/ G may be assigned arbitrarily at any point P 4:0 

in D, subject only to the restriction G(P) > w(P), where w denotes the unique solution o/(1) 

in D which takes on the assigned boundary values. 

Proo/. This is for the most part  a duplication of the proof of Theorem 13 of 

[1]. Applications of the (simple) maximum principle must be replaced with continuous 

dependence arguments, which may safely be left to the reader. The main difference 

lies in guaranteeing that  each solution v~ is non.negative. Let  L denote the minimum 
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of w over D. Then each v~ has boundary values which are >/L. Thus by  the maxi- 

mum principle we have v, >~ Const. L - C o n s t . ,  where the coefficient of L may  even 

be negative. In  any case, the functions v, are uniformly bounded below. By making 

the change of variables 4 = u + Const., with the constant suitably chosen, it may  there- 

fore be supposed without loss of generality tha t  v, >~ 0. 

5. Linear equations 

The results of the preceding sections can be sharpened somewhat in case (1) is 

linear, tha t  is, of the form 

) axe-- aij(x)-oH+b~(x)u+et(x) =ct(x)  +d(x)u+l(x). (34) 

Here it is assumed tha t  the coefficients a~j (x) are bounded measurable functions satis- 

fying the ellipticity condition 

a~j ~ ~j >i 2 ~2, ~ = Const. > O, 

and tha t  the coefficients b~ through / fall into the Lebesgue classes 

b~, c~, ei ~ Ln/(1-~); d, [ e Ln/(~-~). 

The various conditions (2) are easily seen to be met  with r162 2, and it follows tha t  

Theorems 1 through 3 hold for (34), again with a = 2. 

Now let 7n denote the class of smoothly bounded domains D such [D I ~<D0, D O 

being the constant in Theorem 8. We assert tha t  properties P1 and P2 hold for any 

domain D of class ~ .  

Indeed, the uniqueness and continuous dependence of solutions of the Dirichlet 

problem is a direct consequence of Theorem 8 applied to the difference of two solu- 

tions. The existence of solutions is naturally a more difficult matter .  For smooth data,  

the result can be obtained (in outline) by first smoothing the coefficients, then show- 

ing tha t  the solution (known to exist by the classical Schauder theory) is uniformly 

continuous in the closure of the domain in question (this involves the usual straight- 

ening of the boundary),  and finally tending to a limit. When the data is only con- 

tinuous, existence can be obtained by a standard approximation process based on the 

existence theorem for smooth data. An alternate discussion based on functional analysis 

is given in reference [3]. Proper ty  P2 is obvious, by the superposition property of 

linear equations. 

This being the case, it follows tha t  for any domain D in the class ~ there 
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exists a family of solutions of (34) which satisfies the conclusion of Theorem 4. In  

addition, we have the following supplementary results, in which (34)0 refers to equation 

(34) with e t ~ / ~ 0 .  

T ~ E O R E ~  5. Let G be a particular solution o/ (34)0 in the set 1 ) - ( 0 ~ ,  such that 

G ~ r  2-n or G ~ l o g  1 / r  near O, depending on whether n > 2  or n =2. Then every solution o/ 

(34) in D -  ~0~ which in the neighborhood o/ 0 is bounded below by a multiple o / r  e-u, or 

log l / r ,  has the/orm 
u = Const. G § w, 

where w is a solution o/ (34) in the entire domain D. 

Proo/. This result is an analogue of Theorem 5 of [4]. I t  is clearly enough to 

carry out the proof when D is in the class ~ .  This being the case, we m a y  suppose 

by  virtue of property P1 that  both u and G are zero on the boundary of D, and 

tha t  e ~ ] - ~ O .  Moreover, by  adding a suitable multiple of G to u it can be assumed 

without loss of generality tha t  u >/0 near 0. 

Under these assumptions it follows from Theorem 8 tha t  both u and G are non- 

negative in D. The proof of Theorem 5, reference [4], can now be taken over almost 

word for word (and indeed even simplifies a bit). 

Remark. In  view of Theorem 5, the family of solutions given by  Theorem 4 is 

unique and depends continuously on a single multiplicative parameter.  

The following result is a slight generalization of Theorem 5 in tha t  the existence 

of a solution G is not required. 

T H e o r e M  6. Let u be a continuous solution o] (34) in the set D - ( 0 ~ ,  which in the 

neighborhood o] 0 is bounded below by a multiple o] r ~-~, or log 1/r.  Then either u has a 

removable singularity at O, or else (possibly alter multiplication by - 1) 

~ I r  2-n , 8 > 2 ,  

[ l o g l / r ,  n = 2 ,  

in the neighborhood o/the origin. 

Proo/. Let  D'  be a suitably small neighborhood of the origin. Then there exists 

a solution G of (34)0 in the set D ' - { 0 } ,  such tha t  G~-r ~-n or G ~ l o g  1/r. Consequently, 

by Theorem 5, 
u ~ Const. G + w 

in the set D ' - { 0 ) ,  and the conclusion follows at  once. 
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6. Corrections and additions to reference [1] 

1. As t hey  are s tated,  Theorems 3, 4, 3' ,  and  4' of [1] are val id  only in case 

M = 0 .  The  correct versions of Theorems 3 and  4 are as follows: 

TKEOREM 7. Let u be a weak solution of (1) in a domain D c ~.  Suppose that u <~ M 

on the boundary o / D ,  and that conditions (2) hold. Then 

m a x  u <<. M + C'IM[ + C{IDL - ~  [l~]l~, D + k}, (~ = Max (0, u -  M)), 

where C, C', and k depend only on the structure of (1). In  particular 

k = {[D[ "In [[/[[}r(~-n + {[D[.,. [[gll}l/~e, 

while C' tends to zero as Ildll tends to zero. 

THEOREM 8 (Maximum principle). Let u satisfy the hypotheses o/Theorem 7. Then 

there exists a constant Do, depending only on the structure of equation (1), such that if 

[D I <~ D O then 

m a x  u <~ M + C'[M[ + Ck. 

Proo/of  Theorems 7 and 8. The error in the  original proof  came in asserting the  

general  va l id i ty  of (25) on page 262. When  M = 0, k > 0, howewer,  (25) holds in the set 

u >/~', and  the  proof  as g iven is correct.  The  case M = 0, k = 0 m a y  then  be ob ta ined  

b y  a t r ivial  approx imat ion  a rgument .  Thus,  if M = 0 ,  we have  shown t h a t  

m a x  u <~ C(IDI -II~ ]]~11~. D + k), 

or in the  case of Theorem 8, 

m a x  u < Ck. 

(~ = Max (0, u)), (35) 

(36) 

The  general  result  can be ob ta ined  b y  apply ing  (35) and  (36) to  the  new de- 

pendent  var iable  u* = u - M .  This change affects  the  s t ructure  of (1) b y  replacing f 

and  g respect ively wi th  

] + 2~-lM~-ld, g + 2~-lM~d. 

Hence  k mus t  be replaced in (35) and  (36) b y  

{[D[ ~'n lit + 2~-lMa-ld[[} 1/~-1 + {[DI ~'~ IIg + 2~-lM~dll} 1'% 

The la t te r  expression is easily seen to  be less t han  

Const. k + C' [M], 

where C' tends to  zero as ]DI ~'~ ]]d]] tends to zero. This  completes  the  proof.  
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Theorems 3' and 4' are corrected in a similar way. We may  omit the details. 

Theorem 3 was not used in [1], and Theorem 4 was applied only a t  one point 

on page 278. Here the inequality 

must  be replaced by 

u(x) >~ Min (/~, lUg+l) - Ck 

u(x) >1 (1 - C') Min ([z~, [~+1) - Ck, 

according to Theorem 8. For sufficiently large v we have C'~< i ,  and the conclusion 

u --> ~ as x--> 0 follows as before. 

We note tha t  the maximum principles above can be given wider validity in several 

directions. First, the results clearly apply not only to the equation div ~4 = B, but  also 

to the differential inequality div A ~> B. More generally, if 

div .,4(x, u, u~) >~ B(x, u, uz) 

whenever u > M0, then Theorems 7 and 8 hold for all M ~> M0, This result has particular 

application to the linear equation (34) when the coefficient d is non-negative and M ~> 0. 

Indeed, in this case it is clear that  we may  omit  the term C' IM[ in the conclusions of 

Theorems 7 and 8, and moreover neglect ][dII in the determination of the constants C 

and D o . 

Also, the maximum principle holds for all exponents a in the range 1 ~<a< ~ ,  

assuming for a > n that  b, e E L~/(~-I), c E L~, and d,/,  g E L r This extension requires no 

essentially new ideas in the proofs already given. 

2. The phrasing of Theorem 7 of [1] does not indicate the specific dependence 

of the coefficient C' on the domains D and D'.  I t  is therefore worth pointing out 

tha t  this dependence is completely expressed by a single number  N, the number o/ 

spheres (o/ radius<~ 1) required /or the chaining argument. In  particular, for pairs of 

domains D, D '  and /), / ) '  which are geometrically similar and both contained in a 

bounded subset of ~ ,  it may  be assumed that  the corresponding constants C' and C' 

are the same. This fact plays an important  par t  in our various applications of the 

Harnack principle over annular regions (cf., for example, the proof of Lemma 2). 

3. In  the same way, Theorem 8 of [1] is not  stated in as sharp a form as could 

be desired. The following version is preferable. 

T ~ O R E M  9. Let u be a weak solution o/(1) in a domain D ~ .  Then u is (essenti- 

ally) HSlder continuous in 1). Moreover, i/[u[ < L then/or x, y E D 
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where H and ~ depend only on the structure of (1), and R is the maximum distance o / x  or 

y to the boundary o /D,  (or R = 1 i / this  is smaller). 

To see this, it is enough to replace the final sentence of the original proof by 

the following argument: 

Let  x be the point further from the boundary of D. If I x -  y] < 2-(Y+l)~I~R, then by 

inequality (48) 

On the other hand, if I x - y l  >~ 2-(v+')~"R, then since lul < L  we have 

< 2L cL l J! 

This completes the proof. 

4. We observe (without proof) tha t  assumption (8) in Chapter I of [1] can be 

replaced by the weaker condition (7). Condition (8), is required, however in Chapters I I  

and III .  Finally, though we shall not carry out the details, one can show that  the 

hypothesis of Theorem 1 of the present paper can we weakened slightly to read 

b, eEL,~j<~,_l); cELnI(1-~); d,/,gELnl(~-~), 

except that  for a = n we require b ELnI(,~-I-~). 

5. One further reference should be included in the bibliography of [1], namely 

GEVREY, M., Sur certaines propridtds des fonctions harmoniques et leur exten- 

sion aux dquations aux dgrivdes partielles C. R. Acad. Sci. Paris, 183 (1926), 

546-548. 

In  this paper there occurs for the first time a removable singularity theorem of inter- 

polatory type for solutions of elliptic equations. 

Note: This work was partially supported by the United States Air Force Office of 

Scientific Research under Grant :No. AF-AFOSR-63-373. 
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