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1. Introduction

It is apparent that the theory of shift-invariant subspaces of the Hardy class
H, developed by Beurling [1] in 1949 is related to the prediction theory of weakly
stationary stochastic processes as systematized by Kolmogorov [6] in 1941. This has
been pointed out by Helson and Lowdenslager [4] and Lax [7], but the extremely
close relationship between the two subjects becomes much clearer when seen in the
light of a result ((2.1) below) on the decomposition wrought in a Hilbert space by
an isometric operator acting on it. This result, known apparently for some time, has
been stated in a clear form and put to significant use in a recent paper by Hal-
mos ([3], Lemma 1).

Our purpose is to show that the central theorems of both subjects, viz. the
existence of a single isometric generator for shift-invariant subspaces of H, (Beurling
{11, Theorem IV), and the decomposition of a non-deterministic process into a one-
sided moving average and a deterministic process (Wold’s Theorem [2], p. 576) are
derivable by the same techniques from this result on decomposition (§ 3)(2). We shall also
show that the Riesz-Nevanlinna factorization of a function y in the Hardy class H,
into optimal and residual factors(®) is just a variant of the Wold decomposition, these
factors being precisely the generating function and normalized innovation of the
stochastic process generated by y under shifts by ¢ (§ 4). Beurling’s Theorems I-III,

which extend to H, Wiener’s Closure Theorem for L, will emerge as corollaries of

(}) Part of the work on this paper was done under a grant from the National Science Founda-
tion and under the sponsorship of the Office of Naval Research.

(2) The writer would like to thank Professor K. Hoffman for ealling his attention to the lemmma
contained in Halmos’s paper [3] (then unpublished). In his mimeographed publication [5] Hoffman
has also proceeded from this lemma. But as will become clear from the sequel and is commented upon
after 3.8, there are differences between our approaches.

(%) Called outer and inner factors by Beurling.
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Wold’s Theorem (§ 4). (Beurling’s Theorem IV, however, goes beyond the ambit of
simple prediction theory, and to prove it recourse has to be taken to the decomposition
lemma or to the alternative devices due to Beurling, Lax and others.) Thus we shall
reveal the precise and close relationship between the theories of prediction and of
functions in the Hardy class H,.

We shall show all this for vector-valued processes and matriz-valued functions on
the unit circle of the complex plane. For this we shall first extend the decomposition
lemma from the Hilbert space § to its Cartesian product £ (2.8), which we shall not
treat as simply a Hilbert space but cndow with a Gram-matricial structure (§ 2). The
reasons for dealing with §? under this more complicated structure have been stated
in [15, § 5]

A few bibliographical remarks are now in order. Prediction theory was extended
to vector-valued processes in 1957-58 independently by Wiencer and the writer [18,
I, 1I], Helson and Lowdenslager [4], and Rosanov [17]. Vectorial extensions of Beur-
ling’s theorems (especially of Thcorem IV) were given by Lax [7] in 1959. The
optimal-residual factorization of matrix-valued functions in H, was given by the writer
[11] in 1959. The further factorization of the residual factor, when it is of full rank,
into a matricial Blaschke product and a purely residual factor follows, as the writer
showed in [12, 13], from the remarkable work of Potapov [16] in 1955. In this
paper all these results will emerge in what seems to us to be the most natural and

simple setting.
2. The Wold Decomposition of a Hilbert Space

Halmos’s Lemma 1, [3], may be stated as follows. Let S be an isometry on a

(complex) Hilbert space £, and let R=S(H) be its range, then

SO LSH O LA SHS) (> k>0)
. L0 (2.1)
H=> 8 +100S’ (£

-3

k=0

g

).

In this formulation the result resembles the Wold decomposition of the “‘past and
present” subspace I, of a non-deterministic, weakly stationary stochastic process
(S.P.) into its “innovation subspaces” and ‘remote past” (cf. e.g. [18], Part I, 6.10).
We shall therefore spcak of (2.1) as the Wold decomposition of § wrought by S. It can
be established by refining the arguments used in proving Wold’s Theorem for a S.P.
(in which %* is on=-dimensional) after replacing M, by $ and U* by S, U being the
shift operator of the process.
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We wish to extend (2.1) to the Cartesian product $? of g-dimensional (column-)
vectors with components in §, where g is a positive integer. We do not, however,
consider $? as simply an inner product space in the usual way, but endow it with

a Gram-matricial structure (1):
e =Uf ], f=(a, g=(g)%, 1, gEDY (2.2)
We say that fleg, <o and only if (1, g)=0. (2.3)

The Gram matrix (I, g) also yields the usual inner product trace (f, g), which is of

no importance to us, and the usual absolute value
q
|f]=ytrace (1, 1) =2 |F % (2.4)
i=1

which provides the appropriate topology for % We take linear combinations of vee-
tors f, in §? with ¢xg¢ matrix (and not just complex) coefficients, and so define linear

manifolds and (closed) subspaces of % We easily get the following lemma:

2.5 LEMMA. M is a subspace of £° if and only if M =IN, where M is a subspace
of §; moreover M is the set of all components of vectors in M.

We denote by &(f), ©(1));;, the subspaces spanned by ! singly, and by the
family f,, j€J. We have a projection theorem akin to that for §: every f€$? has a
unique projection (f|7M) on a subspace M such that

gmem, t-¢m.r.m
This yields the following:

2.6 LEMmMA. The subspace M of D equals S(1), if and only if t€M, and 0=g€M
implies that g is not orthogonal to L.

It would be incorrect, however, to speak of S(f) as a ‘“‘one-dimensional” subspace;
for invariably there will be non-zero vectors g, h in S(f) such that- g Lh. Only those

linear operators T on £? to ? are rclevant to us, which stem from a lincar opera-
tor T on P by “inflation”:

T = (Tf) .1, T=(f), €H (2.7)
For a detailed discussion of $? sce [18, I, § 5], where unfortunatcly we have

taken 9=1L,(Q, B, P), but our arguments are not dependent on this specific reali-
zation. The result (2.1) extends to $? as follows:

(*) Our usage of bold face and script letters is as follows: f, g etc. denote members (i.e. vectors)
of 9% and M, N, etc. denote subspaces of -bq. A, B, etc. denoto ¢ X g matrices with complex-entries,
and P, ¥, X etc. denote ¢ X ¢ matrix-valued functions.
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2.8 THEOREM. (Wold decomposition of ). Let S be an isometry on the (complex)
Hilbert space 9, S be the operator on £ to H° induced by 8, cf. (2.7), and R = S(H. Then

@ SRYLSRYLASH) (>E>0),

(b) =38 (RY+ N §(§9).

This theorem is deducible from (2.1) in a straightforward way. For instance, (a)

can be had from the relations
R=% Ri=(RY)?, SRH={S*RH},
and MLR in O implies INTLRN in HO
We leave the details to the reader.
A concrete realization of $% which shall concern us, is obtained by taking
as § the space of g-dimensional (row-)vector-valued functions on the unit circle
C=[|z|=1] of the complex plane, whose components are in L, It is easy to check

that $? is then the space L, of ¢ x¢ matrix-valued functions on €' whose entries are
in L,, and that

2
(P, ¥) = %ZJ‘ D) W*(9)ds (P, WEL,). (2.9)
0
The nth Fourier coefficient of @ is defined by

1 2n
e 0P (%) do. (2.10)

A=
27t 0

We shall denote by 127, Li the subspaces of L, comprising functions & for which

A, vanishes for n<0, n<O0, respectively. Similarly we define Ly, Ly and also
L., LY, ecte.

3. The Wold and Beurling Theorems

As our first corollary of 2.8 we shall get Wold’s Theorem for a non-determinis-
tic process, cf. [18, I, 6.9, 6.10]:

3.1 WoLp’s TREOREM (Form I). Let (i) (1,)%. be a q-variate, weakly stationary
S8.P., i.e. a bisequence in H? for which (1,,1,) =T'n_» depends only on the difference m —n;
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(if) My=Clicn, M= N My

Ne~—00
(11) (1,)>. be non-deterministic, i.e.

gn=fn—(fn|mn<1):#:0 (—°°<7L<00).

Then (a) (gn)iooo 18 orthogo'nal, ie. (8m» 8n) = Orin (gO: 8o);

(b) M=3G(gn) + Mo 5C(E) LM

Proof. We know, cf. [18, I, § 6], that there exists a unitary operator U on
such that

Ufp=fo:1, 1<i<q (— o0 <n<oo),

where f,=(f,)"-,. Now by 2.5, M,=M3, where M, is a subspace of §. Since U*(M,)
=IN,_1 =, therefore the restriction S of U* to M, is an isometry on IM,. Hence
by 2.8

S(RY LS (RY LAS (M) (>>0) 1)
M, =38 (R + A §' (M), @
k=0 =0
where R=S(M,)=M,_,, R=M,nM_,.

Obviously 160 S'(M,) =M. Hence (a), (b) will follow from (1), (2) if we can show that
S (M nME_3) =M N M iy = S(8n- &)
But this is obvious, since from (ii), (iii)
Mu_ie=Mu_ie1+ E(Fn k) = M1 + S(gn ),
and M,_x_11g,_x (QED.).

As shown in [I8, I, 6.11] this result on the subspaces of the process can be

translated into one on the moving-average representation of the process itself:

_ 3.2 WoLp’s THEOREM (Form II). Let 1, g,, etc. be as in 3.1 and let G =(g,, g;)-
Then

fn =k§0Akgn—k+(fn|m—oo): gl-]-(fn]mvoo):
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where A G=(fp, g k), A¢8 =280
ZIAVBI< e, () Ao)G=)G.

The matrices A, are not necessarily unique, but A, G and A, )G are unique (cf. [9]).

The bisequence (g,)%., given in 3.1 (iii) is called the innovation process of
(£,)%0, and G =(g,, g,) is called its lag 1 prediction error matriz. The innovation pro-
cess can be ‘“‘normalized”. For this let ¢ be the space of g-dimensional (column-)
vectors with complex components, and R be the range of the linear operator on (¢
represented by the matrix G in the privileged basis of €9, and let the matrix J re-

present the orthogonal projection from €¢ onto R (same basis). Then
I=J*=1 JGI=)G=J)G, (3.3)

and from 3.1(a) it follows that Jg,=g,. Elementary considerations show that there

exists a positive definite, invertible matrix H such that
HyG=J=)GH. (3.4)
Let h,=Hg,; then we easily find that
(hy,, h,) =0, HGH=4,,J,
gn = Jg» = |/Gh,.

(h,)Z7, is called the normalized innovation process of (1,)*,. We thus get

3.5 WoLp’s THEOREM (Form III).(2) Let f,, g,, etc. be as in 3.1, and J represent
the projection onto the range of the linear transjormation given by G =(8y, 8y). Then

fn____kgoAkVGhn et (M W), B LM ),

where (h,)%,, ts the normalized innovation process:

(B, hy) =0Omn d, gn= VGhm h,= Hgn,

(1) The Euclidean norm |A |E of a matrix A =[ay] is defined by
| A IZE =trace AA¥* = Zia_l 2,‘-2.1 I ay lz.

(?) This result is an extension of [18, I, 6.12], in which we assumed that rank G =g¢.
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H is as in (3.4),

AYG=(t i), AVG=VG, >[A,6[i<oo.

The function ® =>4 A,)/Ge*®, which is clearly in L3*, is called the generating
function of the process (f,) .. The relations (3.3), (3.4) yield a canonical expression
for @. Thus, let Q=(I—J)+ P H. Then clearly Q€L Q, (0)=L() and Q)G ==&,
Since det, is in the Hardy class H,, on the disk [|z|<1], and does not vanish
identically, it follows that det€ vanishes almost nowhere on C. Thus

3.6 CoroLLARY. The generating function @ of a non-deterministic S.P. is always
expressible in the form QY G, where G is the prediction error matriz, and Q €LY is inver-
tible a.e. on C, and ., (0)=1.

A crucial property of the generating function is given by the following lemma
proved by us in [8, 2.9]:

3.7 Basic LEMMA. If @ is the generdtim_} function of a non-deterministic S.P.,
then (2) ¢.(0)>0, and

0+WeL)” and PE*=DB* ae. implies ¥, (), (0)*<{P.(0)}>

We turn next to the application of 2.8 to the theory of shift invariant sub-

spaces of L3*. This yields the following matricial extension of Beurling’s Theorem
IV [1}:

3.8 BEURLING-LAX THEOREM. Let M be a proper subspace of L3* such that
e'Mmem.
Then

(a) m=1z'X,

where X=JU€ELY, T is a (constant) projection matrix and U is an a.e. unitary matriz-
valued function on C;

(b) In (a) the function X = JU €LY} is unique up to a constant unitary matriz pre-jactor.

(*) Here and throughout the sequel the symbol W . will denote the holomorphic extension to
the disk [|2]<1] of a function WeLlt on C=[|z|=11

(2) Here and in the sequel for matrices A, B we shall write A>B or B<A to mean thatA—B
is non-negative hermitian.
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Relation between 3.8 and Lax’s Theorem. Theorem 3.8 differs in form from Lax’s
vectorial extension [7, p. 164] of Beurling’s Theorem IV. In the first place, Lax deals
with functions on (— o, c0) and not on C=[|z|=1]; but we may suppose that this
difference is removed by an initial conformal transformation of the upper half-plane
onto the disk [{z|<1]. Even so, Lax’s functions are g-dimensional vector-valued,
whereas ours are gXg matrix-valued. Thus, Lax deals with a shift invariant subspace
M of (L3*)%. The generating element of I turns out to be a function F whose values
are almost everywhere isometries from a fixed subspace €7 of €? to €¢ (p<gq). His

result takes the form
M= P(LI)",

We, on .the other hand, never leave the space LY* of gxq matrix valued funections,
and provide for possible degeneracies in rank by introduction of the projection matrix J.
Our generator X occurs as a post-factor and not like Lax’s F as a pre-factor. Not-
withstanding these differences the two results are equivalent, and hence our title for 3.8.
Our proof of 3.8, based on 2.8, is close to K. Hoffman’s, who uses the Halmos
lemma (2.1) [5, p. 153]. But Hoffman adheres to Lax’s enunciation, and accordingly
has, like Lax, to get hold of a lower dimensional Hilbert space. This is avoided in
our approach, which we feel best reveals the connection between this subject and
prediction theory. Indeed, functions of the form JU€ELY enter quite naturally in the
prediction theory proofs of factorization theorems, as we first noticed in [11] and as

will be seen in §4 below.

Proof of 3.8. (a) By 2.5, M=, where M is the space of all vectors which are
rows of matrix functions in M. It follows from our hypothesis that ¢ <IR. Hence

letting
S() =€ (peM),

it follows that S is an isometry on I to M. Now consider the induced operator

S on M:
S(W) =€ (Wem).

s

We have sim < ﬁ L3 = {0}.
1=0

=0

I

Hence by Theorem 2.8
M-3R, FRYLSRY (>k>0) M
where ‘ R=e"M, R=Mn (M <L (2)
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It only remains to show that R*=&(X,) where X, =J,U, €LY. For then, §*(RY) =
e°&(X,) and (1) will imply that for any W €M,

v =§0A,,e"“’x1 - ®X,, ®cLY,

as desired. In the light of Lemma 2.6, our objective reduces to showing that
X, =J, U, €R* such that 0¥ ER' implies ¥ ts not orthogonal to X,. (A)
Let W, X €eR: Then from the second relation in (1)
WX, XMW (k=1).
It follows from (2.3), (2.9), (2.10) that
¥X* =const.= (¥, X) a.e on C.
From this we draw two inferences:
for all WER:, ¥ =¥, ¥) ae., and so WELY; (3)
for all ¥, XeR*, W1 X if and only if ¥X*=0 aq.. (4)

From (3) and the polar decomposition we get ¥ =)/(¥, ¥) U, where U(e%), is unitary a.c.
Now put G=(¥,%¥) and define the matrices J, H as was done above in (3.3), (3.4).
Then it easily follows that

for all WER:, W=y(¥ V)X, X=JU=H¥YeRcLS. (5)
In view of (5) and (4) our goal (A) may be restated:
There exists a X, =3, U €RL such that 0+X=JUER: implies X, X"+0. (A

To prove (A’), we note that by (5) the rank of any W in R! is essentially con-
stant. Let
p=max {r: r=rank ¥, a.e., ¥E€R*}. (6)

Then there exists a Xo=J U, €R* such that rank J,=p.

In case p=gq, we have J,=1 Hence we can take X, =X,=U, in (A’), which then

becomes utterly obvious. In case 1<p<ygq, we can find a unitary matrix V, such that

J,=V,3, V5 =diag.[1, ..., 1,0, ..., 0] of rank p.(*) (7

(*) diag. [ay, ..., a;] denotes the g x ¢ diagonal matrix with entries gy, ..., a; along the diagonal.
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Then, letting U, =V,U, we get
X,=J,U,=V,X €R- (8)
Now suppose, in contradiction to (A’), that
0+JUER* and X, U*J=0. (9)

Take any projection matrix K such that JK=K, and O<r=rank K<g—p. We can
find a unitary matrix V such that

J,=VKV* = diag. [0, ..., 0, 1, ..., 1] of rank r.
Then X,=VKJU=VKU=J,V*'U=),U,,

where U,=VU. From (9)
X,=J,U,eRt and X, X3=0. (10)

From (8) and (10), X, +X,€R!. But since the non-zero rows of X,, X, have disjoint
locations, in view of our selection of J;, J, and the fact that 0<r<g—p, and since
X, X3 =0, it follows easily that

rank (X, + X,) = rank X, + rank X, =p+7r>p.

This contradicts (6). Hence our supposition (9) is untenable, i.e. we have (A’). This
completes the proof of (a).
(b) Suppose that M =L3*X,, X, = J, U, LY. Then X, X} =J,, and so (X;, X,¢"%) =0
for £>0. Thus
X, L S(X, "), =9 S(X, ") 0 =M.
Hence X, €M n (e®ML=R" cf. (2). It follows from (A) and Lemma 2.6 that
X, =AX, where X=JUER! is as in (a). (11)

Obviously, J,=AJA*, and hence by the polar decomposition AJ=1J,V,, where V, is

unitary. It follows that
3 (V, IV =AJIVI=AJV=1J,.

Hence I, <V, IV (12)

But since X €M, i.e. JUEL'J,U,, therefore rank J < rank J;,. This together with (12)
shows that J, =V, JV{, from which we get AJ=1J,V,=V,J. (11) now gives

X =AX=V,JX=-V,X,
as desired. (Q.E.D.)
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4. The Factorization and Closure Theorems for L3+

The results 3.7 and 3.8 suggest the following definition:

4.1. DEFINITION.(!) (a) We call ® an optimal function in L3+, if
Pell, ® (0)>0,
and WeLY and WH* = BD* q.e. implies ¥, (0)F, (0)*<{PD, (0)}%

(b) We call X a residual function, if X=JU€ELSY}, where J is a (constant) pro-
jection matriz and U(e®) is unitary a.e.

The Parseval Identity [18, I, 3.9(c)] at once yields:

4.2. Lemma. Let X=JU€LY. Then X, (0) X, (0)*<J; moreover X, (0)=J implies
X=J ae

A culminating point in the work of Riesz, Nevanlinna and Szegd is the result
that complex-valued functions in L§*, 0<d< oo, can be factored into unique optimal
and residual functions. In [11] we extended this result to the matricial space L3* by
using the isomorphism between the time and spectral domains of a S.P., ¢f. [10]. We
shall now indicate how recourse to this isomorphism can be avoided by applying the
Wold Theorem 3.5 directly to the weakly stationary matricial S.P. (‘I’e_"w)ﬂo, for
which W €L3*, and the shift into the future is given by multiplication by e ‘¢, This
process is a bisequence in the space H'=L,, cf. §2. For this S.P.

M_, =S¥ ), < ST,

and hence M_,={0}. Wold’s Theorem 3.5 is therefore applicable, and shows that the
process is a one-sided moving average of its normalized innovation process. This yields
the desired theorem:

4.3. FACTORIZATION THEOREM. Let 0+W€EL), and ®,X be the generating
function and normalized innovation of the S.P. (¥We *0)*,. Then

(a) ¥ =®X a.e.;

(b) X s residual, XX* = projection on range of ®., (0), and S(Xe**0)P.o = S(We )% ;

(c) P is optimal in L} and HD*=WP*.

(*) Beurling {1] uses the terms “outer” and “inner” in place of “‘optimal” and ‘“residual’.
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Proof. (a) Let G be the prediction error matrix of the S.P. (We *%)%,, and J be
the projection onto the range of G. Then by 3.5 (X, Xe*%) =¢..d, and therefore

XX*=J ae., XE€L,. (1)

Next, since M_,, = {0}, therefore again by 3.5
-3 A, /6X - BX,
Ko

the last equality being permissible since >%.o|A, /G|t <o and X € L.
(b) Since JG=A,)/6=&. (0), it follows cf. (1) that ¥, i.e. XX*, is the projection
onto range of @, (0). Next, by (1) and the polar decomposition

X=1JU, U(e"®) =unitary a.e. (2)
Again since M_.,={0}, and yGX is the (non-normalized) innovation, therefore by 3.1(b)
S(We )0 =My =S(/GX e ). (3)

But X =H(/GX), where H is invertible; hence (3) reduces to the second equality in (b).
This equality shows in particular that X €L}*. But by (1) X €L,,. Hence X €LY/, i.e.
X is residual.

(¢) The Basic Lemma 3.7 and Definition 4.1(a) show that & is optimal in L3*.
Finally, since A;)/G=A,)GJ, therefore @ =PJ; hence by (a) and (1)

YY* = XX @* = dJB* = PP*. (Q.E.D.)

4.4. Un1QUENESS THEOREM. Let 0+W €Ly, Then

(a) there exists a umique function ® such that ® is optimal in LYY and ®P* =
YY¥* a.e.; ,

(b) there emists a unique function X such that X is residual, ¥ = ®X, S(Xe"0)7. o=
S(We%., where @ is as in (a).

Proof. (a) Suppose that @, is optimal in L}* and &, ®}=¥YY¥"* a.e. In view of
4.3(c), to prove (a) we need only show that &, =P, where & is the generating
function of the S.P. (We *)*,. Now since ®,®}=YP*, the processes (¥e ¥0)*,
(P,e7 %>, have the same covariance structure and therefore the same generating

function, viz. ®. Hence by 4.3

® -@X, X,-JUelY, (1)
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where J is the projection onto the range of @®. (0). Moreover by 4.3(c) ®®* = &, P}.
From this and the optimality of @, ®,, it follows that

¢? (0) = ¢1-4- (O) = VGs Sa’yy

ie. by (1) Y6G=)GX,(0). Premultiplying this by the matrix H of (3.4) we get
J=3X,.(0), ie. J=X,,(0). Hence by 4.2, X, =1J, a.c. The equation (1) thus reduces
to @, =], ie. to P, =P.

(b) Suppose that X, =J,U, €LY, ¥ ==&X,, and
@(x1 ekm)icw-o = @(‘!’e""’)féﬂo. (2)

In view of 4.3(b), it will suffice to show that X, =X, where X is the normalized innova-
tion of the S.P. (We *9)=,. Now

X - ¥ - &X,, 3)

By 3.6 &=Q )G, where Q is invertible a.e. Premultiplying (3) by 2 'H, where H
is as in (3.4), we get

IX=JX,, ic X=JX,. (4)

It follows that d=JJ,J, i.e. J<J,. But in addition to this we have rank J, =rank J;
for from (2) and Theorem 3.8(b) J;,=VJV*, where V is unitary. Hence J=J,. This
reduces (4) to X=J, X, =X,. (Q.ED.)

4.5. DEFINITION. Let 0+W €L2*. Then the unique optimal and residual functions
®, X given by 4.4(a), 4.4(b) will be called the optimal and residual factors of W.

We sec from the preceding results that these factors are precisely the generating
function and the normalized innovation of the matricial process (We *'¢)®.,.

We know from the classical theory that every complex-valued residual function

can be factored into a constant e'*, o real, a Blaschke product and the radial limit of

22 19

exp |5 [ E b du), ()

where p is a monotone increasing, right continuous function on [0, 27] such that

#(0)=0 ae. In 1955 Potapov [16] gave a remarkable generalization of this result for

functions W €LY such that WY¥*<I and rank W=gq a.e., in which (1) is replaced by

a multiplica.ti\?e integral with respect to a monotone increasing, right continuous,

hermitian matrix-valued function E. In [12, 13] we have shown that in case ¥ is residual,

the weighting E is jump-singular, i.e. E'=0, a.e. Thus when ¥ is in L}* and has full
19— 62173068. Acta mathematica. 107. Imprimé le 27 juin 1962.
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rank ¢, its residual factor admits a further factorization into a constant unitary matrix,
a matricial Blaschke product, and the radial limit of a multiplicative integral taken
with respect to a purely jump-singular, monotone increasing hermitian weighting, in
full analogy with the classical situation. For details see [12,13], where, however, the
constant unitary factor has been overlooked.

One of Beurling’s objectives in [1] was to solve “Wiener’s closure problem” for
H,, or equivalently L3*, i.e. to find functions in L" the one-sided shifts of which

span the whole of L}". The following result extends his solution to L+

4.6. CorROLLARY (Closure Theorem for L37). Let 0+W €LY". Then
S(W e, =13 K, (1)

where K is a projection matriz,(1) if and only if W =>V,, where ® is the optimal
factor of ¥, and V, is a unitary matriz such that V,XVg gives the projection onto the
range of @, (0).

Proof. Let X=JU be the residual factor of W. Then from (1), 4.4(b) and 3.8(b)

X =V,K, V,=unitary matrix. (2)

Hence J=XX*=V,KV;. (3)
Hence by 4.3(a), (2) and (3)

¥ =dpX =PV, K=PIJV,=DV,. (4)

Conversely, let (3) and (4) hold. Then & =&V, Premultiplying by Q™ 'H, cf.
3.6, (3.4), we get X=1JV,, ie. by (3) X=V,K. Since V, is invertible, it follows that
S(X )P o =CS(Ke") P =13 - K.

Since by 4.3(b), the L.H.S.=&(¥e*%),, we have (1). (QE.D.)

We also casily get matricial extensions of Beurling’s Theorems I, III in [1]:

4.7. COROLLARY. Let W,, W,€L3". Then

(a) W,€ES(W, ") 0, if and only if the residual factor X, of W, is a right divisor
of the residual factor X, of W,, i.e.

X,-¥X, Weli.

(1) In particular, we can take K =1I.
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(b) clos. {S(W,e"0)7.0+ S(W, ")) = S(X e'%)%0, where X is a greatest common
residual right divisor of X, X,.

Proof. (a) This follows from the results, cf. 4.4(b), 4.5,
S(F;e" o =6(X,e")r o =13"X, (j=1,2),
W, eS(W,6")%. if and only if S(W,e")Fo S S(W,e)2,,
the corresponding equivalence for X.
(b) Let M be the subspace on L.H.S. (b). Then ¢*M<M, and hence by Theo-

rem 3.8(a), there exists a residual function X such that

M-13"X. 1)
Since W,, ¥, €M, therefore by (a)

X is a right divisor of X, and X,. (2)
Next, let X, be any residual right divisor of both X,, X,. Then by (a)
¥, ¥, €S(Xye )P,

and so M=S(X,e*%)%. . Hence again by (a) and (1), X, is a right divisor of X. It
follows from (2) that X is a greatest common, residual, right divisor X;, X,. (Q.E.D.)
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