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l .  Introduction 

I t  is apparent that  the theory of shift-invariant subspaces of the Hardy class 

H 2 developed by Beurling [1] in 1949 is related to the prediction theory of weakly 

stationary stochastic processes as systematized by Kolmogorov [6] in 1941. This has 

been pointed out by Helson and Lowdenslager [4] and Lax [7], but  the extremely 

close relationship between the two subjects becomes much clearer when seen in the 

light of a result ((2.1) below) on the decomposition wrought in a Hilbert space b y  

an isometric operator acting on it. This result, known apparently for some time, has 

been stated in a clear form and put  to significant use in a recent paper by Hal- 

mos ([3], Lemma 1). 

Our purpose is to show that  the central theorems of both subjects, viz. the 

existence of a single isometric generator for shift-invariant subspaces of H 2 (Beurling 

[1], Theorem IV), and the decomposition of a non-deterministic process into a one- 

sided moving average and a deterministic process (Wold's Theorem [2], p. 576) are 

derivable by the same techniques from this result on decomposition (w 3)(3). We shall also 

show that  the Riesz-Nevanlirma factorization of a function ~ in the Hardy  class H 2 

into optimal and residual factors(a) is just a variant of the Wold decomposition, these 

factors being precisely the generating function and normalized innovation of the 

stochastic process generated by v 2 under shifts by e i~ (w 4). Beurling's Theorems I - I I I ,  

which extend to H~ Wiener's Closure Theorem for L2, will emerge as corollaries of 

(1) P a r t  of  t he  work  on  t h i s  pape r  was  done  u n d e r  a g r a n t  f r o m  t h e  :National Science F o u n d a -  

t ion  a n d  u n d e r  t h e  sponsorsh ip  of t h e  Office of N a v a l  Research .  

(~) T h e  wr i te r  would  like to t h a n k  Professor  K.  H o f f m a n  for cal l ing his  a t t e n t i o n  to t h e  l e m m a  

con ta ined  in H a l m o s ' s  pape r  [3] ( then  unpub l i shed ) .  I n  h is  m i m e o g r a p h e d  pub l i ca t i on  [5] H o f f m a n  

h a s  also proceeded  f rom th i s  l e m m a .  B u t  as  will become clear f rom the  sequel  a n d  is c o m m e n t e d  upon  
a f t e r  3.8, t he re  are  d i f ferences  be tween  our  approaches .  

(s) Called outer a n d  inner fac tors  b y  Beur l ing .  
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Wold's Theorem (w 4). (Beurling's Theorem IV, however, gocs bcyond the ambit  of 

simple prediction theory, and to prove it recourse has to be taken to the decomposition 

lemma or to the alternative devices due to Beurling, Lax and others.) Thus we shall 

reveal the precise and close relationship between the theories of prediction and of 

functions in the Hardy  class H~. 

We shall show all this for vector.valued processes and matrix.valued /unctions on 

the unit circle of the complex plane. For this we shall first extend the decomposition 

lemma from the Hilbert  space ,~ to its Cartesian product ~q, (2.8), which we shall not 

t reat  as simply a Hilbert  space but  endow with a Gram-matricial structure (w 2). The 

reasons for dealing with ~q under this more complicated structure have been stated 

in [15, w 5]. 

A few bibliographical remarks are now in order. Prediction theory was extended 

to vector-valued processes in 1957-58 independently by Wiener and the writer [18, 

I, II] ,  Helson and Lowdenslager [4], and Rosanov [17]. Vectorial extensions of Beur- 

ling's theorems (especially of Theorem IV) were given by Lax [7] in 1959. The 

optimal-residual factorization of matrix-valued functions in H 2 was given by the writer 

[11] in 1959. The further factorization of the residual factor, when it is of full rank, 

into a matricial Blaschke product and a purely residual factor follows, as the writer 

showed in [12, 13], from the remarkable work of Potapov [16] in 1955. In this 

paper all these results will emerge in what seems to us to be the most natural and 

simple setting. 

2. The Wold Decomposition of a Hilbert Space 

Halmos's  Lemma 1, [3], may  be stated as follows. Let  S be an isometry on a 

(complex) Hilbert  space ~,  and let ~ = ~ (~ )  be its range, then 

~, (~l) • ~ (~l) • ~ s' (,9) (J > k >/0)] 
l-0 I (2.1) 

k - 0  1 =0  

In this formulation the result resembles the Wold decomposition of the "pas t  and 

present" subspace ~1~ 0 of a non-deterministic, weakly stat ionary stochastic process 

(S.P.) into its " innovat ion subspaees" and "remote past"  (cf. e.g. [18], Par t  I, 6.10). 

We shall therefore speak of (2.1) as the Wold decomposition o /~  wrought by S. I t  can 

be established by  refining the arguments used in proving Wold's Theorem for a S.P. 

(in which ~ l  is on~-dimensional) after replacing N 0 by ,~ and U* by S, U being the 

shift operator of the process. 
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We wish to extend (2.1) to the Cartesian product ~q of q-dimensional (column-) 

vectors with components in ,~, where q is a positive integer. We do not, however, 

consider ~q as simply an inner product space in the usual way, but endow it with 

a Gram-matricial structure (1): 

(f, g)=[(/ ' ,  g~)], f=(/~)~=l, g=(gJ)~-l, f, gE.~ q. (2.2) 

We say that  f •  i/ and truly i/ (f, g)=0.  (2.3) 

The Gram matrix (f, g) also yields the usual inner product trace (f, g), which is of 

no importance to us, and the usual absolute value 

q 

if I = i/trac e (f, f) = • [/, [2, (2.4) 
i - 1  

which provides the appropriate topology for ~q. We take linear combinations of vec- 

tors f~ in ~q with q• matrix (and not just complex)coefficients, and so define linear 

manifolds and (closed) subspaces of ~q. We easily get the following lemma: 

2.5 LEMMA. ~ is a subspace o/ ,~q, i/ and only i / ~ = ~ q ,  w~re  ~ is a subspace 

o/,~; moreover ~ is the set o/ all components o/vectors in ~ .  

We denote by ~(I), ~(fj)j~:, the subspaces spanned by f singly, and by the 

family fj, ~EJ. We have a projection theorem akin to that  for ,~: every f E ~  q has a 

unique projection ( f ] ~ )  on a subspace ~ such that  

This yields the following: 

2.6 LEMMA. The subspace ~ o/ ,~q equals ~(~), i / and  only i / f E ~ ,  and O ~ g E ~  

implies that g is not orthogonal to I. 

It  would be incorrect, however, to speak of ~( f )  as a "one-dimensional" subspace; 

for invariably there will be non-zero vectors g, h in ~(~) such tha t -g •  Only those 

linear operators T on ~q to ~q are relevant to us, which stem from a linear opera- 

tor T on ,~ by "inflation": 

T(f) = (Tf)~.~, f--  ( f ) ~  E~ q. (2.7) 

:For a detailed discussion of ~q see [I8, I, w 5], where unfortunately we have 

taken ~ L ~ ( ~ ,  B, P), but our arguments are not dependent on this specific reali- 

zation. The result (2.1) extends to ,~q as follows: 

(') Our usage of bold face and script letters is as follows: f, g etc. denote membors (i.e. vectors) 
of ~q, and ~ ,  ~ ,  etc. denote subspaces of ~e. A, B, etc. denote q • q matrices with complex-entries, 
and {I ~, tI/, X etc. denote q • q matrix-valued functions. 
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2.8 THEOREM. (Wold decomposition of ,~q). Let S be an isometry on the (complex) 

Hilbert space ~, S be the operator on ~q to ~_q induced by S, c/. (2.7), and ~ = S(~q). Then 

o o  

(a) SJ(R~)•177 ~) (]>k>~0), 
I=0 

k - 0  Z-0 

This theorem is deducible from (2.1) in a straightforward way. For instance, (a) 

can be had from the relations 

= ~q, ~ = (~)~, S ~ ( ~ )  = { S  ~ (,~)}~, 

and ~ • ~ in ~ implies ~i~q • ~q in ,~q. 

We leave the details to the reader. 

A concrete realization of ~q, which shall concern us, is obtained by taking 

as ~ the space of q-dimensional (row-)vector-valued functions on the unit circle 

C =  [[z[ = 1] of the complex plane, whose components are in L 2. I t  is easy to check 

that  ~q is then the space L 2 of q • matrix-valued functions on C whose entries are 

in L~, and that  

(~,  ~ )  = ~ (I,(e ~~ ~ *  (e '~ dO (~,  ~ e L2). (2.9) 

The nth Fourier coefficient of ~ is defined by 

1 /2'~e_ntO~(etO)dO. (2.10) 

We shall denote by I~'-, L~- the subspaees of L~ eomprising functions ~ for which 

A,~ vanishes for n < 0 ,  n ~ 0 ,  respectively. Similarly we define I~-,  L2- and also 

Loo~ 0+ Lor etc. 

3. The Wold and Beurling Theorems 

As our first corollary of 2.8 we shall get Wold's Theorem for a non-determinis- 

tic process, cf. [18, I, 6.9, 6.10]: 

3.1 WOLD's TREOREM (Form I). Let (i) (f~)_~ be a q-variate, weakly stationary 

S.P., i.e. a bisequence in ~q /or which (fm, l~)=rm-~ depends only on the di//erence m - n ;  
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(ii) ~ .  = ~(fk)k<. ,  

(iii) (I.)_~ be non-determiniztic, i.e. 

g . = f . - ( ~ . l ~ . . , ) , o  ( -  oo <n<  oo). 
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Then (a) (g.)_~ is orthogonal, i.e. (g.~, g~)= ~t,.. (go, go); 

(b) ~ .  = ~.| (g.-k) + ~ / -= ,  ~ | =. 
k-O 1 - - o o  

Proo/. We know, cf. [18, I, w 6], that  there exists a unitary operator U on .9 

such that 

Ul'~ = '  /~+1, l<.i<~q ( - o o < n < ~ ) ,  

where f. i q =(/.)t-1. Now by 2.5, ~ . = ~ ) ~ ,  where ~r~ n is a subspace of ~. Since U*(~rJ~.) 

=~J~n_l~_~J~n, thercfore the restriction S of U* to ~r~. is an isometry on ~J~.. Hence 

by 2.8 

SJ(RI)ZSk(Rz)_I_ N S~(~,) (j>k>~0), (1) 
1-0 

m~: ~ sk(~) + ~ st(re.), (2) 
k - 0  1-O 

where R = S(~n) = ~ n - l ,  R ~ = ~ .  rl )'n~- 1. 

Obviously f~ S Z ( ~ . ) = ~ .  Hence (a), (b) will follow from (1), (2) if we can show that  
l - 0  

s ~ ( ~ .  n ~ _ , )  = ~ . _ k  n ~ _ ~ _ ,  = |  ~). 

But this is obvious, since from (ii), (iii) 

and ~ ' / . -k-1•  ( Q . E . D . ) .  

As shown in [18, I, 6.11] this result on the subspaces of the process can be 

translated into one on the moving-average representation of the process itself: 

3.2 WOLD'S THEOREM (Form II). Let In, g., etc. be as in 3.1 and/et  G= (go, go). 

Then 

k - 0  
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where Ak G = (fo, g k), Ao go = go, 

k_5ol Ak VG It < (') Aol/G : 

The matrices Au are not necessarily unique, but Ak G and Ak ~G are unique (c/. [9]). 

The bisequence (gn)??r162 given in 3.1 (iii) is called the innovation process of 

(f~)_~, and G =  (go, go) is called its lag 1 prediction error matrix. The innovat ion pro- 

cess can be "normalized".  For  this let ~q be the space of q-dimensional (column-) 

vectors with complex components,  and R be the range of the linear operator  on (~a 

represented by  the matr ix  G in the privileged basis of ~q, and let the matr ix  J re- 

present the orthogonal  projection from ~ onto R (same basis). Then 

j = j ,  = j2 [ / G J =  [/G = JI /G,  (3.3)  

and from 3.1(a) it follows tha t  J g n = g . .  E lementa ry  considerations show tha t  there 

exists a positive definite, invertible matr ix  H such tha t  

H [/G = J = VGH. (3.4) 

Let  h n = H g n ;  then  we easily find tha t  

(hm, h~) = 5m~ H G H  = ( ~  J, 

g~ = Jg~ = [/Gh~. 

(h~)_~r162 is called the normalized innovation process of (f~)_~. We thus get 

3.5 WOLD'S THEOREM (Form III).(2) Let f~, g~, etc. be as in 3.1, and J represent 

the pro~ect~on onto the range o/the linear trans/ormation given by G = (go, go). Then 

k - 0  

where (hn)_~ is the normalized innovation process: 

(hm, h~)=~m,J, g~=[/Gh~, h~=Hgn,  

(1) The Euclidean norm I A IE of a matrix A = [at/] is defined by 

I A It = t~,ce AA* = ~'~-x ~f=, [a,, 12. 

(z) This result is an extension of [18, I, 6.12], in which we assumed that rank G = q. 
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H is as in (3.4), 

A Ak ~/G = (fo, h_k), A0 VG = ~/fi, k~ol ~, ~/G I~ < oo. 

The function ' ~ = ~ _ o A k V G e  kt~ which is clearly in L ~ , is called the generating 

function of the process (I~}~r162 The relations (3.3), (3.4) yield a canonical expression 

for ~ .  Thus, let ~ = ( I - J ) + ~ H .  Then clearly ~ E L  ~247 ~ + ( 0 ) = I , 0 )  and ~ V G = ~ .  

Since d e t ~ +  is in the Hardy class H2/q on the disk [ Iz l< l ] ,  and does not vanish 

identically, it follows that  dets vanishes almost nowhere on C. Thus 

3.6 COROLLARY. The generating function ~ of a non-deterministic S.P. is always 

expressible in the form ~ ~/G, wI~ere G is the prediction error matrix, and ~ E L~ + is inver- 

tible a.e. on C, and ~+ (0) = I. 

A crucial property of the generating function is given by the following lemma 

proved by us in [8, 2.9]: 

3.7 BASle LEMMA. I f  ~ is the generating function of a non-deterministic S.P.,  

then (2) ~[~+(0)N0, and 

O~:WJEL~ ~ and ~rvj[*=c]~,~* a.e. implies q[.r+(O)tlt+(O)*-<:{{I~+(O)) e. 

We turn next to the application of 2.8 to the theory of shift invariant sub- 

spaces of L ~ This yields the following matricial extension of Beurling's Theorem 

IV [1]: 

3.8 BEURLI~o-LAx THEOREM. Let M be a proper subspace of L ~ such that 

e~O~ ~_ ~ .  

Then 

(a) ~ = L e§ X, 

where X = JU o+ E Lr162 J is a (constant) projection matrix and U is an a.e. unitary matrix- 

valued ]unction on C; 

(b) In  (a) the function X ~ JU E L~ ~ is unique up to a constant unitary matrix pre-]actor. 

(1) Here  a n d  t h r o u g h o u t  the  sequel  the  s y m b o l  ~ .  will deno te  the  ho lomorph ic  ex tens ion  to 

t h e  d i sk  [I z I < 1] of a func t ion  ~I t C L~ ~ on  C = [I z I = 1]. 

(2) Here  a n d  in t he  sequel  for ma t r i ce s  A, B we shall  wri te  A ~ - B  or B ~ A  to m e a n  t h a t A - B  
is non-nega t ive  her ra i t ian .  
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Relation between 3.8 and Lax's Theorem. Theorem 3.8 differs in form from Lax 's  

vectorial extension [7, p. 164] of Beurling's Theorem IV. In  the first place, Lax deals 

with functions on ( -  oo  oo) and not on C =  [Iz] = 1]; but  we may  suppose tha t  this 

difference is removed by  an initial conformal transformation of the upper half-plane 

onto the disk [ H < I ] .  Even so, Lax 's  functions are q-dimensional vector-valued, 

whereas ours are q• matrix-valued. Thus, Lax deals with a shift invariant subspaee 

of (L~ q. The generating element of ~ turns out to be a function F whose values 

are almost everywhere isometries from a fixed subspaee @v of ~q to ~q (p~< q). His  

result takes the form 

~ / =  F(L~ F . 

We, on _the other hand, never leave the space L ~ of q• matrix valued functions, 

and provide for possible degeneracies in rank by  introduction of the projection matr ix  J.  

Our generator X occurs as a post-factor and not like Lax 's  F as a pre-factor. Iqot- 

withstanding these differences the two results are equivalent, and hence our title for 3.8. 

Our proof of 3.8, based on 2.8, is close to K. Hoffman's,  who uses the Halmos 

lemma (2.1) [5, p. 153]. But  Hoffman adheres to Lax ' s  enunciation, and accordingly 

has, like Lax, to get hold of a lower dimensional Hilbert  space. This is avoided in 

our approach, which we feel best reveals the connection between this subject and 

prediction theory. Indeed, functions of the form JU e L  ~ enter quite naturally in the 

prediction theory proofs of factorization theorems, as we first noticed in [11] and as 

will be seen in w below. 

Proo/ o/ 3.8. (a) By 2.5, ~)~ =~J~q, where ~)~ is the space of all vectors which are 

rows of matr ix  functions in ~ .  I t  follows from our hypothesis tha t  ei~ Hence 

letting 

it follows tha t  S is an isometry on ~ to ~J~. Now consider the induced operator 

S on ~ :  
S(~)  = e ~~ ( ~  e ~ ) .  

W e  h a v e  ~ = { 0 } .  
l = 0  1 ~ 0  

Hence by  Theorem 2.8 

' ~ =  ~Sk(R• S~(Rx)• J-) ( j>k>~0),  
k = 0  

where R = e '~ ~ ,  ~• = ~ ~ (e i~ ~ ) •  ~ L ~ 

(I) 

(2) 
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I t  only  remains  to show tha t  ~ = ~ ( X l )  where X l = J 1 U 1 E L  ~ For  then, S~(~1) = 

ek~e~(X1) and (1) will imply  t h a t  for any  ~I~E~,  

= ~ Akek~~ = ~ X l ,  �9 E I~ +, 
k~O 

as desired. In  the light of L e m m a  2.6, our  object ive reduces to showing tha t  

X 1 = J1U1 E ~• such that 0 4 v ~  E ~• implies ~ is not orthoyonal to X r (A) 

Le t  ~ r  • Then f rom the second relation in (I) 

W • 1 7 6  X l e k ~ ~  (k />l ) .  

I t  follows f rom (2.3), (2.9), (2.10) t h a t  

tIrX* = const. = (W, X) a.e. on C. 

From this we draw two inferences: 

/or all ~ISE)~ • tIs~I]*=(~c, tI]) a.e., and so tYELL~; (3) 

/or all t]~, XE}~• t I c •  i /  and only i /  t I~X*=0  a.e. (4) 

F rom (3) and the polar  decomposi t ion wc get  tIS = ~/(tIt, ~P) [J, where lJ(e~~ is unitary, a.e. 

Now pu t  (~= (tIS, W) and  define the matr ices  J, H as was done above  in (3.3), (3.4). 

Then it easily follows t h a t  

/or all tISE ~• ~P = [/(tIS, q~) X,  X = JU = H~F E ~ '  ~ o§ _ L ~ .  (5) 

In  view of (5) and  (4) our goal (A) m a y  be res ta ted:  

There exists a X I = J 1 U 1 E ~  • such that 0 ~ X = J I . T E R "  implies XlX*~=0 .  (A') 

To  prove  (A'), we note  t h a t  by  (5) the rank  of a n y  tI~ in ~z  is essentially con- 

stant .  Le t  
p = m a x  (r :  r = r ank  ip, a.e., ~I j E R• (6) 

Then there exists a X o = J o U o E R  • such that r ank  J 0 =  p. 

In  case p = q ,  we have  J e = I .  Hence we can take  X l = x  o = U  o in (A'), which then  

becomes u t te r ly  obvious. In  case 1 ~< p < q, we can find a un i t a ry  ma t r ix  u such t h a t  

J i  = V 0 J 0 V ~  =diag .  [1 . . . . .  1, 0 . . . . .  0] o/ rank p.(~) (7) 

(1) diag. [a s . . . . .  aq] denotes the q • q diagonal matrix with entries a 1 . . . . .  aq along the diagonal. 
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Then, letting U I = VoU o we get 

x~ = #,Ul = VoXo e ~. (8) 

Now suppose, in contradiction to (A'), that 

0 : ~ J U e ~  J" and XIU*J=0. (9) 

Takc any  projection matr ix K such tha t  JK = K, and 0 < r = rank K < q -  p. We can 

find a uni ta ry  matr ix  V such tha t  

Js = VKV* = diag. [0 . . . . .  0, 1 . . . . .  1] o/ rank r. 

Then X 2 = V K J U  = V K U  = J 2 V * U  = J 2 U ~ ,  

where U s = VU. From (9) 

X2 = JsU2 E )~ • and X l X ~  = 0. (10) 

From (8) and (10), X I + X 2 E R  1. Bu t  since the non-zero rows of Xi ,  X ~ have disjoint 

locations, in view of our selection of J1, J~ and the fact  t ha t  0 < r <  q - p ,  and since 

X l X ~  = 0 ,  it follows easily tha t  

rank (X 1 + X2) = rank X 1 + rank X~ = p + r > p. 

This contradicts (6). Hence our supposition (9) is untenable,  i.e. we have (A'). This 

completes the proof of (a). 

(b) Suppose tha t  )~ l= I~+Xl ,  X 1 J1U1 o+ = E L ~ .  Then X 1 X* = J1, and so (Xl ,  X 1 e ki~ = 0 

for k > 0. Thus 
Xl • | e~~ = d ~ | e~~ = d ~ ~ .  

Hence Xle)~/ f~  ( e t ~  ~, ef. (2). I t  follows from (A) and L e m m a  2.6 t h a t  

X x = A X ,  where X = $ U E ~  �9 is as in (a). (11) 

Obviously, J I = A J A * ,  and hence by  the polar decomposition A J = J 1 V 1 ,  where V 1 is 

uni tary.  I t  follows tha t  
Jl (Vl  ~ v * )  = A J ~ V ~  = A~V~' = j~. 

Hence J1 ~ Yl J Y~. (12) 

Bu t  since X E ~ ,  i.e. JUEL~+JIU1, therefore rank J~< rank J1. This together  with (12) 

shows tha t  J I=V1JV~,  from which we get  A J = J I V I = V 1 J .  (11) now gives 

X I = AJX = VIJX = VIX, 

as desired. (Q.~,m.) 
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4.  The  F a c t o r i z a t i o n  and Closure T h e o r e m s  for I~  + 

The results 3.7 and 3.8 suggest the following definition: 

4.1. DEFIIqITION.(I) (a) We call ~ an optimal function in L ~ i/ 

�9 EL ~247 ~+(0)N0,  

and t t tEI~ + and tFt]~*=cI~* a.e. implies tIS+(0)ll~t+(0)*-({cI~+(0)) 2. 

(b) We call X a residual function, i/ X =  JU 0+ E L ~ ,  where J is a (constant) pro. 

~ection matrix and U(e ~e) is unitary a.e. 

The Parseval Identi ty [18, I, 3.9(c)] at once yields: 

4.2. LEMMA. Let X = J U  0+ E Loo. Then X+ (0) X+ (0)*-< J; moreover X ~ (0) = J implies 

X = J  a.e. 

A culminating point in the work of Riesz, Nevanlinna and Szeg5 is the result 

that  complex-valued functions in L ~ 0 < ~ <  cr can be factored into �9 optimal 

and residual functions. In [11] we extended this result to the matricial space L ~ by 

using the isomorphism between the time and spectral domains of a S.P., cf. [10]. We 

shall now indicate how recourse to this isomorphism can be avoided by applying the 

Wold Theorem 3.5 directly to the weakly stationary matricial S.P. (tYe-~t~ for 

which tl[tEL ~ and the shift into the future is given by multiplication by e-te, This 

process is a bisequence in the space H q =L2, cf. w 2. For this S.P. 

~ _ ~  = ~ ( W  eklo)k>~ ~ ~ ~(IektO)~<~, 

and hence ~/_~ = {0}. Wold's Theorem 3.5 is therefore applicable, and shows that  the 

process is a one-sided moving average of its normalized innovation process. This yields 

the desired theorem: 

4.3. FACTORIZATION THEOREM. Let 0~tIJEL~ +, and ~ , X  be the generating 

/unction and normalized innovation o~ the S .P .  (We-k~a)_~. Then 

(a) t]F = cI~X a.e.; 

�9 ( ~ l X e  ktO~~176 _ ~ l t r ,  IekiO~oo (b) X is residual, X X * = p r o ~ e c t i o n o n r a n g e o / ~ + ( O ) , a n d ~  Jk~o- ~= jk-o; 

(c) ~ /s optimal in I2z + and ~ *  =tIn~*. 

(1) Beurling [1] uses the terms "outer" and "inner" in place of "optimal" and "residual". 
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Proo/. (a) Let G be the prediction error matrix of the S.P. (tlte-~~ and J be 

the projection onto the range of G. Then by 3.5 (X, Xe k~~ =Oo~J, and therefore 

X X * = $  a.e., X~Loo. (1) 

Next, since M_r162 = {0}, therefore again by 3.5 

ty  = ~ A~ VGXe ~'~ = OK,  
k - O  

the last equality being permissible since ~0=0 IA V I < ~ and X eLoo. 

(b) Since ~/G=AoVG=~+(0),  it follows cf. (1) that  J, i.e. XX*, is the projection 

onto range of ~+  (0). Next, by (1) and the polar decomposition 

X = JU, U(e '~ = unitary a.e. (2) 

Again since M_~r = {0}, and ~/GX is the (non-normalized) innovation, therefore by 3.1(b) 

( e )k_o=Mo=~(~/GXe )~=0. (3) 

But X=H(~/GK), where H is invertible; hence (3) reduces to the second equality in (b). 

This equality shows in particular that  X E L ~  But by ( 1 ) X ~ L ~ .  Hence X E L  ~ i.e. 

X is residual. 

(c) The Basic Lemma 3.7 and Definition 4.1(a) show that  ~ is optimal in L ~ 

Finally, since AkI/G=Akl/GJ, therefore ~ = ~ J ;  hence by (a) and (1) 

tInt~* = ~XX* ~* = ~ J O *  = ~ * .  (Q.E.D.) 

4.4. U N I Q U E N E S S  THEOREM. Let 0:VtFEL ~ Then 

(a) there exists a unique /unction ~ such that ~ is optimal in L ~ and @ ~ * =  
t]Ert~* a.e.; 

(b) there exists a unique/unction X such that X is residual, ~I t = ~ X ,  ~(Xe~t~176 

~(tl[tekt~ where ~ is as in (a). 

Proo/. (a) Suppose that  ~I) 1 is optimal in L ~ and ~ i ~ = ~ n t ~  * a.e. In view of 

4.3(c), to prove (a) we need only show that  ~ 1 = ~ ,  where ~ is the generating 

function of the S.P. (tFe-kta)_~. Now since CI~lCI)~=tIn~ *, the processes (t]~te-k~e)~, 

(cI~le-kt~ have the same covariance structure and therefore the same generating 

function, viz. ~ .  Hence by 4.3 

= e L ~ ,  (1) (I)1 = cl)Xl,  X l  j U  1 o+ 
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where J is the projection onto the range of O_(0).  Moreover by 4 . 3 ( c ) O O * = O 1 0 ~ .  

From this and the optimality of O,  O x, it follows tha t  

( I : ~  (0) = ( I )1+ (0) = [//(] ,  say, 

i.e. by (1) [ /G= [/(lXl+ (0). Premultiplying this by the matrix H of (3.4) we get 

J = J X l + ( 0 ) ,  i.e. J = X I , ( 0 ) .  Hence by 4.2, X I = J  , a.e. The equation (1 ) thus  reduces 

to O1 = OJ ,  i.e. to O 1= O. 

E L ~ ,  W = O X I ,  and (b) Suppose tha t  X I = J I U  1 o~ 

| ~ , - ,  ~o,~ = ~ x e  )~0. (2) 

In  view of 4.3(b), it will suffice to show that  X 1 = X, where X is the normalized innova- 

tion of the S.P. (~I~e ~t0)~. Now 

O X  = W = O X  1, ( 3 )  

By 3.6 O = ~ / ( ] ,  where ~ is invcrtible a.e. Premultiplying (3) by ~ - I H ,  where H 

is as in (3.4), we get 

J X  = JXl,  i.e. X = J X  r (4) 

I t  follows tha t  J = J J 1 J ,  i.e. J~<J r  But  in addition to this we have rank J l = r a n k J ;  

for from (2) and Theorem 3.8(b) J l = V J Y  *, where u is unitary. Hence J =  J r  This 

reduces (4) to X = J l X l = X  1. (Q.E.D.) 

4.5. DEFINITION. Let 0=~:titEI~ +. Then the unique optimal and residual/unctions 

@, X given by 4.4(a), 4.4(b) will be called the optimal and residual factors o/ W. 

We see from the preceding results tha t  these factors are precisely the generating 

function and the normalized innovation of the matricial process (We-kfa)_~. 

We know from the classical theory tha t  every complex-valued residual function 

can be factored into a constant e ~, ~ real, a Blaschke product and the radial limit of 

1 f ~  z + e  ~~ I 
e x p '  / :---~j, d/~(0)[, (1) 

where # is a monotone increasing, right continuous function on [0, 2~] such tha t  

#'(0) = 0  a.e. In  1955 Potapov [16] gave a remarkable generalization of this result for 

functions ~ E L  ~ such tha t  I][n~*~<I and rank t]~=q a.e., in which (1) is replaced by  

a multiplicative integral with respect to a monotone increasing, right continuous, 

hermitian matrix-valued function E. In  [12, 13] we have shown that  in case ~ is residual, 

the weighting E is jump-singular, i.e. E ' =  0, a.e. Thus when ~I ~ is in I~ + and has full 

19  - 6 2 1 7 S 0 6 8 .  A c t a  maChemat /va .  107.  I m p r i m $  le 27 j u i n  1962.  
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rank q, its residual factor admits a further faetorization into a constant unitary matrix, 

a matricial Blaschke product, and the radial limit of a multiplicative integral taken 

with respect to a purely jump-singular, monotone increasing hermitian weighting, in 

full analogy with the classical situation. For details see [12, 13], where, however, the 

constant unitary factor has been overlooked. 

One of Beurling's objectives in [1] was to solve "Wiener's closure problem" for 

H 2, or equivalently L ~ i.e. to find functions in L ~ the one-sided shifts of which 

span the whole of L ~ The following result extends his solution to L~ 

4.6. COROLLARY (Closure Theorem for L~ Let 04=titEI~ § Then 

|176 = I~ ~. K, (1) 

where K is a pro~ection matrix,(I) i[ and only i/ t i t=  ~ V  o, where ~ is the optimal 

]actor o/ t]~, and V o is a unitary matrix such that VoKV~ gives the projection onto the 

range o/ @+(0). 

Proof. Let X = J U  be the residual factor of tit. Then from (1), 4.4(b) and 3.8(b) 

Hence 

X = Yo K, Yo = unitary matrix. 

J = X X *  = V o K V ~ .  

(2) 

(3) 

Hence by 4.3(a), (2) and (3) 

= cI, X = 4,Vo K = @JVo = ~Vo. (4) 

Conversely, let (3) and (4) hold. Then ~ = ~ V  o. Premultiplying by s cf. 

3.6, (3.4), we get X=JVo ,  i.e. by (3) X = V o K .  Since V o is invertible, it follows that  

|176 = |  e ~'~ ~-o = L ~ �9 ]K. 

Since by 4.3(b), the L.H.S.=~(We~~176 we have (1). (Q.E.D.) 
We also easily get matrieial extensions of Beurling's Theorems I, I I I  in [1]: 

4.7. COROLLARY. Let tit1, ttt2EL~ Then 

(a) tlt2E~(tI~le~t~ i] and only i] the residual ]actor X 1 o] t]~ 1 is a right divisor 

o[ the residual ]actor X 2 o] Wz, i.e. 

X2=~rXl ,  ~ L ~  +. 

(x) I n  p a r t i c u l a r ,  w e  c a n  t a k e  K = 1. 
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(b) clos. ~o = kto {~(Wle  )x-o+ ~(XektO)~o, X is greatest common. ~(tI:2 e )k-o} = where a 

residual right divisor o/ Xl,  X~. 

Proo/. (a) This follows from the results, cf. 4.4(b), 4.5, 

(~1 x e~tO~ _L0+V ~(xIJjek~~ = ~ t  j j k - o -  2 ~.j (j = 1, 2), 

W2 E~(Wlek~O)k_o~O i/ and only if ~to oo kto oo | b , -o=- |  )~o,  

the corresponding equivalence for X .  

(b) Let  )~/ be the subspace on L.H.S. (b). Then e t ~  and hence by  Theo- 

rem 3.8(a), there exists a residual function X such tha t  

~=L~ (1) 
Since ~ISl, tit 2 E ~ ,  therefore by  (a) 

X is a right divisor o/ X 1 and X~. (2) 

Next,  let X a be any  residual r ight  divisor of both  XI,  X a. Then by  (a) 

. k l O  o o  lt~?l, t'I/2 e ~ ( X 3  e )k-O, 

and so ~ ~0 oo ~ (Xae  )k:0. Hence again by (a) and (1), X3 is a r ight  divisor of X. I t  

follows from (2) tha t  X is a greatest common, residual, r ight divisor X1, X~. (Q.~.~.) 
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