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Introduction

A classical theorem of Wiener [12] and Lévy [7] states that if f€4, where A denotes
the class of all functions on the unit circle which are sums of absolutely convergent trigono-
metric series, and if F is defined and analytic on the range of f, then F(f) € A. This theorem
was extended by Gelfand [2], [8; p. 78] who showed that it holds if A4 is replaced by any
normed ring.

We are interested in the converse: which functions F have the property that F(f)€A
whenever f€A4? We have recently announced solutions of this and of some analogous
problems [6], [3], [4]; in the present paper we publish complete proofs, and we extend our
results to group algebras of infinite, locally compact, abelian groups in general. Roughly
speaking, we prove (Theorems 1, 2, 3 below), that the analytic functions are the only ones
with the desired property.

If ' is the dual group (or character group) of the locally compact abelian group G
(with addition as group operation), we denote by A (I') and B(T") the algebras of all Fourier
transforms and Fourier-Stieltjes transforms on T, respectively. That is to say, f€4 () if
there exists some g€L! (@) (the space of all complex functions which are integrable with
respect to the Haar measure of @), such that

@) =§@=[(-zyg@de (yel).
G

The symbol (z,y) denotes the value of the character y at the point z. 4 (I") is normed
by the L'-norm on G:

() The first and last named authors are Research Fellows of the Alfred P. Sloan Fundation.
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IFl=lgl=Ngll,=[lg@)|dz (€A ).
G

Similarly, f € B(I') if there iz a bounded complex Borel measure u on & such that
fW=a@)=[(-zydu (yeD),
G

and we norm B(I') by defining
Al =11 &l = | ]| = total varistion of 4.

With these norms, 4(I') and B(I') are Banach algebras under pointwise addition and
multiplication, and A (I") is a closed ideal in B(I"). If I is the circle, then A4 (I) is the alge-
bra A mentioned in the first paragraph.

For the sake of conciseness, we make the following definition:

A function F, defined on a set E in the complex plane, is said to operate in a function
algebra R if F(f)€R for all f € R whose range lies in E.

Unless the contrary is explicitly stated, we shall always assume that F is defined on
the closed interval I =[—1,1] of the real axis, and that

F(0)=0,

and we shall always assume that G and T' are infinite, locally compact, abelian groups.
We state our main results:

TeEOREM 1. If I s discrete and if F operates in A ('), then F is analytic in some neigh-
borhood of the origin.

THEOREM 2. If I is not discrete and if F operates in A(I"), then F is analytic on I.

THEOREM 3. If I' ts not compact and if F operates in. B(I"), then F can be extended to
an entire function in the complex plane.

Note that if I" is compact, then B(I') = A(T'), so that this case of F operating in B(I')
is covered by Theorem 2.

The conclusions of these theorems may be restated in terms of power series: in Theorem 1,
(-]

there is a series ) a,t" which converges to F(t) in some interval around the origin; in
0

Theorem 2, we have such a representation in some neighborhood of each point of I; and
in Theorem 3, F(?) is the sum of a power series with infinite radius of convergence.

In the final section of this paper we shall indicate how these theorems have to be modified

if F is defined in a plane region. Some consequences of Theorem 3 are discussed in Section
VL
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The notation Agz(["), Bx(I") will be used to denote the subsets of 4(I') and B(I') which
consist of real-valued functions; similarly, 4,(I") and B/(I") will denote the sets of functions
in A(T"), B(I'), whose range lies in I.

I. The continuity of F*
1.1. Before we can prove analyticity of F, we have to prove that F is continuous. If
F satisfies the hypotheses of Theorem 2, this causes no difficulty: suppose ¢, €I and {,~t;

there exists an f€4 (I') such that f(y,) =t¢, for some sequence {y,} which has a limit point
y€I', and the fact that both f and F(f) are continuous implies that

lim F (1) = lim F (f(ga) = F () = F t),

so that F is continuous at £.

If I' is discrete (and Theorem 3 will be reduced to this case), the above argument
fails, and we shall appeal to Lemma 1.3 below. First, however, we construct certain ap-
proximate identities which will be used frequently.

1.2. Lemma. To every finite subset E of the discrete group I" one can associate a
finite set S in I’ such that

m(S+E)<2m(S).
If T=8+E and if the polynomial K is defined by

K )_myz (=29 Z (z,y") (z€Q), (1.2.1)

then ||K|,<2, R(y)=1 for all y€E, and | K (y)|<1 for all y€T.

Here m denotes the Haar measure on I'; since I" is discrete, m (S) is just the number of
points in 8. Note also that @ is now compact.

Proof: Let T'; be the smallest subgroup of I' which contains E. Being finitely generated,

I'; is a direct sum of a finite group I', and a group A of lattice points in a euclidean space.
If S is taken to be the cartesian product of I'; and a large enough “cube” in A, it is clear that
m(S + E) <2m(8).

If f, and f, are defined by

fl (x) =y§s(—x, y)) fz (.’L‘ Z (27 y) (xea)y

the Schwarz inequality shows that

llKlll\ (S)”h”z "fz”z {m(S)m(T)}*<2*<2
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To complete the lemma, we rewrite K (z) in the form
1
=-__ ll_ ’ 1 rr . 1'2.2
K (x) m(S)Z(x,y ¥) (WES y'ET) (1.2.2)

For any fixed y€E and any y' €S, we have y + y' €T, so that y =y" — ¥, for some y"€T.
It follows that the term (x,y) occurs precisely m (S) times in the sum (1.2.2) if y€ E, and it
occurs no more than m (S) times for any y€rI.

» Note. If T is the group of all integers, the familiar trapezoidal function for X is obtained

by the above construction: if

1 1 3 i pod 1
oy _ -1p8 a0
K =ony1,2,° ‘,_g,me ’
then
1 if |»|<N,
Ruy={2-121 it n<|n|<2n, (1.2.3)
0 if 2N<|n|.

Formula (1.2.3) aleo applies if I' is a finite cyclic group, provided its order exceeds
4 N; this remark will be used in 5.5.

1.3. LEMMa. Suppose I is discrete and & > 0. Suppose that F (f)€B(T') for all f€ B,(T")
such that ||f|| <e. If e <1, F 18 continuous in the segment ( — &, €); if ¢ > 1, F is continuous on I.

Proof. Fix t€1 such that |t| <¢, and assume that F is discontinuous at ¢. Then there
exist real numbers a, such that t +a, €1,

S at<{e—|t| (1.3.1)
n=1
and
|F(t+a)-F@)|>n (n=1,2,3,..) (1.3.2)
for some 7 >0.
Since I' is infinite (our standing assumption), there is a sequence {y,} (r=1,2,3, ...)

in I', with the following properties:

@) wuFy,+y,—y, if 4, i, i, are all less than n;
(b) if E, consists of y,, ..., y, and if S, and T, are associated with E; as in Lemma 1.2,
then y,¢7,—- 8, if j<na.

Define
tta, if y=y, v=1,2,3, ...),

(1.3.3)
¢ for all other y €T".

/(y)={
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Then f€B,(I'), since f is the Fourier-Stieltjes transform of the measure
td,+ nzla,, (z, ¥n) (1.3.4)

on @, where §, is the unit mass concentrated at the identity element of G; the series in
(1.3.4) belongs to L?(G), and (1.3.1) shows furthermore that ||f|| <e.
The hypotheses of the lemma thus imply that the function g defined by

F(t+a,) if y=y,

9= { F(t)  for all other y €T

belongs to B(I'), and we conclude that there is a measure x on @ such that

N Ft+a,)—F@) if y=y,,
u(y)={ ( @ y=y (1.3.5)
0 for all other y €T.
Put
i
Pyz)=2 plyn) @ yn)  (=1,2,3, ... z€G). (1.3.6)

Property (a) of {y,} implies, by an argument familiar from the study of lacunary
trigonometric series [15; p. 217], that || P,||, <2t || P;||,, and Hélder’s inequality then

shows that
| Plla <21 - (1.3.7)

But if K, is the polynomial associated with E; as in Lemma 1.2, property (b) of
{y.} implies that P,=K,z, so that || Py||,<2| u||. It follows that

i . 3 ‘
(Stiwal] -Ieh<alul =123 )

which is impossible, since |z (y,)|>%>0, by (1.3.2).

This contradiction proves that F is continuous at {.

II. The principal lemmas
2.1. LEMMmaA. If I' is any infinite locally compact abelian group, then

sup “e"“ =¢, (2.1.1)
where f ranges over all functions in By (') with ||| <r.

Proof: Since e/=73 (ify*/n!, it is clear that ||e'/||<e!/!l, and the left member of
0

(2.1.1) does not exceed e'.
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Given ¢>0, we choose a positive integer n>2r, so large that

7.2 n
e’{(l—i—n—2) —1><£/2 (2.1.2)
and

(1 +1)">e'—e/2. (2.1.3)
n

We choose points =z, ..., 2, in G (not 0), such that
Ty F otttz (k=1,..,n-1) (2.14)

no matter how the signs are chosen.

Let J, denote the measure of total mass 1, concentrated at the point €@, put

0k=%(0n+d-u) (k=1, .., n) (2.1.5)
and

,l=;-(a,+ ot ). (2.1.6)

It is clear that ||x||=r and that g is real, since g, (y) is the real part of (z,y). We

shall prove that
|||l > e —e. (2.1.7)

Using % to denote convolution, and writing ¢ for the convolution of the measure

o with itself, p times, we have

eiy:(60+%0'1+71)*"'*(60+Zn—ran+1n)’ (218)
where

o0 1 y b4
— _'(Z) of (k=1 ..., n).

p=2 P\
To estimate the norm of 7., we use the assumption n>2r:

1 (r\? ¢*

o0 D
”Tk”gpgz;!(;) <jn‘2 (k=1, ..., n).
We also note that

ot sall=1+=  (k=1, ..., n).
n n

Hence (2.1.8) may be rewritten in the form

e“‘=(60+%01)*---%(60+;—70n)+1, (2.1.9)
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where the norm of remainder A satisfies the inequality

lAll< él (Z) (1 +%)n_k(%)2k<e'él (Z) (%)2k=e':(l +§2)n—1}<.€/2, (2.1.10)

by (2.1.2). Finally, (2.1.3) and (2.1.4) imply that

iy ir
(R P

and (2.1.7) follows from this, together with (2.1.9) and (2.1.10).

ir
0, +—o
o, Ok

n
=11
k=1

r\?
=(1+;) >e '—8/2,

2.2, THE SCHOENBERG CRITERION. This theorem, for whose rather simple proof
we refer to [9] or [1], asserts that each of the following two statements about a function f,
defined on I, implies the other:

(a) f€B() and ||f||<M.
(b) [ is continuous, and for every g€ L* (")
lljnwg(y)dylw-gggl;g(y) (z,9) dy|.
We shall use the following corollary: If f,€ B("), ||f.||< M,
fy)=lm f,(y) (yeD),
and f is continuous, then f€ B(T) and |if|| < M.

2.3. LEMMA. Suppose r >0, M < oo, and ® is a pertodic function on the real line, with
period 27. Suppose O (f +c)EB(T) and || O(f +¢)|| < M for every real number c, provided
that f€ Be(I') and ||f]] <r.

Then @ can be extended to a function which is analytic in the strip |y| <r (z ==z +1y).
Proof: By 1.1 and Lemma 1.3, ® is continuous in some segment; since the hypothesis

involves arbitrary ¢, @ is continuous on the whole line, and we can therefore expand it in
a Fourier series:

D)~ a, e, 2.3.1)
Fix n, choose f€ B(T") with ||f||<r, and define
1 D
b= S 0(jw+2E2) camon ger, p=1,2.3,.). @3
k=1

Since @ is continuous, we obtain
9t — 593804
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2n
1
lim f,(y)==— fd)(f(y)+t) eMdt=a,e™® (yel). (2.3.3)
P00 27t
[

On the other hand, the hypotheses of the lemma imply that f,€B(I') and that
||fs}| < M. The corollary to Schoenberg’s criterion therefore shows that

laa|-|le™||<M (2.34)
for every f€Bg(I') with ||f||<r, and we can conclude from Lemma 2.1 that
lan|< M- (n=0, £1, +2, ...). (2.3.5)

These bounds on the coefficients of the series (23.1) show that the series
Sa, "tV (x, y real) ' (2.3.6)

converges uniformly in every compact subset of the strip |y| <7, and the sum of (2.3.6)

is the desired analytic extension of ®.

2.4. LEMMA. Suppose F(f)€B(I) and |F(f)|| <M for every f€B,(I") with ||f] <e,
for some € > 0. Then F is analytic in some neighborhood of the origin.

Proof: Put
®(x) = F(R sin z),

where 0 < R <1 and eR <& Observe that if ||f|| <1, then ||sin(f + ¢)|| = |[sin ¢-cos f +

cos ¢-sinf| <||cosf|| + || sin f|| <e!'" "< e, for every real constant ¢, so that
|Rsin(f +¢)|| < Re <e.

Thus @ satisfies the hypotheses of Lemma 2.3, with r = 1. The formula

F(z)=0 (?rc sin %) R

valid for — R <z < R, then shows that F is analytic in a neighborhood of the origin.
In order not to interrupt the argument later, we include one more lemma in this

section.

2.5. LEMMA. If G is a compact abelian group which is not of bounded order, then G con-

tains an element of infinite order.
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(We recall that a group G is said to be of bounded order if there is a positive integer
g such that gz =0 for every z€G.)

Proof: For n =1,2,3, ..., let B, be the set of all z€@G such that nxz =0, and assume
that E, contains a non-empty open set V, for some k. If W =V — V, then W is a neigh-
borhood of 0 and kx =0 for every x€W. The group H generated by W is compact and
open, and G/H is finite (being compact and discrete). If G/H has p elements, it follows
that px€H and kpzx = 0 for every x €@, thus G is of bounded order.

This contradiction shows that none of the compact sets E, contains a non-empty open

subset of G. It follows that the set of all elements of infinite order, which is the complement

o0
of U E,, is actually a dense subset of G.
1

III. Proof of Theorem 1

3.1. If I is discrete, so that G is compact, and if P is a polynomial on G, of the form

Pxy=2a,(z,y) (@x€Q yel), (3.1.1)

with only finitely many a,+0, we write FoP for the polynomial
(FoP) (x)=%F(a,) (x,y) (z€G, yeT). (3.1.2)
3.2. LEmma. Suppose I' is countable and discrete, F is defined on I, and there exist con-
stants € >0, M < oo, with the following property:
|[FoP|, <M (3.2.1)
for all P of the form (3.1.1), with a, €1, whose norm satisfies
1Pl <2e. (3.2.2)

Then +f f€B(I') and if ||f|| <&, we also have F(f)€ B(["), and || F(f)|| < M.

Proof: Choose {€ B,(T"), with ||f|| <¢, let {E,} be an expanding sequence of finite sets
whose union is I', and associate with each set F, a polynomial K, as in Lemma 1.2.

Since ||f|| <&, we have || K, f|| <2¢; also , K,f is the transform of a polynomial and the
range of K, f lies in I; thus (3.2.1) applies:

IFE.Nli<sM  (n=1,2,3, ...). (8.2.3)
But for every y € E, we have
F (. () ) =F (@),

10 - 593804. Acta mathematica. 102. Imprimé lo 28 septembre 1959
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so that
F(fy)= lim FR.y)fy) (yel).

If we apply the corollary to Schoenberg’s criterion to the functions F (K, f), (3.2.3) shows
that F(f)€B(I") and | F(f)|| < M.

Note: The assumption that I" is countable may be removed from this lemma, but we

only require the countable case.

3.3. We now assume that F, defined on I, operates in A(I"), for some discrete T.If
I'; is any countable subgroup of I, it is clear that F also operates in A4 (I';); we may ac-
cordingly assume, without loss of generality, that I" is countable, and we shall prove that
the hypotheses of Lemma 3.2 are satisfied. Once this is done, Lemmas 3.2 and 2.4 give the
conclusion of Theorem 1.
If the hypotheses of Lemma 3.2 are not satisfied, then there exist polynomials P, on G,
with coefficients in I, such that

(| Pally<n~ (3.3.1)
but
|FoP,|—>c  (n—>co). (3.3.2)

Let E, be the set of all y€T" such that P, (y) + 0, associate sets ,, T,, and polynomials
K, with E,, as in Lemma 1.2, and let {y,} be a sequence in I such that the sets yn +7,—-8,

are mutually disjoint. The series
g (=, Yn) Py (2) (3.3.3)

converges, in the L'-norm, to a function g€L(G), by (3.3.1); since §€4,(T’), and since F
operates in A(T'), F(§)€A(T). Let » be the function in L'(G) such that & = F(§). Our
choice of y, implies

h@)=F Puly~ys) (yEE,+y,) (3.3.4)

and hence )
(h-@Qn) ) =F (P,(y—w)) (y€D), (3.3.5)
where
Q. (@)= (2, y,) Kp(x) (x€G, n=1,2,3,...). (3.3.6)
By (3.3.5), we have
| FoPully<||@ully- 2l <2 |2, (3.3.7)

which contradicts (3.3.2). Theorem 1 is thus proved.
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IV. Proof of Theorem 2

4.1. To begin with, we shall assume that I" is compact, and our first aim will be the
proof that F is analytic in a neighborhood of the origin if F operates in A4 (I').
If feAd ('), then F(f)€A(T), and

F(f(y))=I§Gaz(f) (z,y) (yeD), (4.1.1)
where
a:(N=[Ff@) (-, y)dy (z€G). (4.1.2)
T

Since F is continuous on I (see 1.1), (4.1.2) shows that the mapping
f—>a:(f) (4.1.8)

is, for each 2 €@, a real valued function on A4 (I'), which is continuous in the norm topology

of A(D). '
Let J be the set of all f€4,(I") which vanish in some neighborhood of 0 (the identity

element of I'), and let C be the closure of J, in the norm topology; C is a complete metric

space, and the mapping

I=IFNl= 2 e 0] (4.1.4)

is & real-valued (finite) lower semi-continuous function on C. The Baire category theorem
implies that | F(f)]| is bounded in some open set of C. Since J is dense in C, there is an
fo€J with the following property: if f€C and if ||f —f,|| <&, then || F(f)|| < M, where e, M
are suitable positive numbers.

Let U be a neighborhood of 0 on which f, vanishes, and choose a non-empty open set
V, whose closure lies in U and does not contain 0.

We now consider any g€A4,(I") which vanishes outside V, such that ||g || <e. Putting
f =1, + g, the above remarks imply that || F(f, +g)|| < M for some M <co. But f, and ¢
have disjoint supports, so that

F(fy+9)=F(f)+ F (g). (4.1.4)
It follows that
NF@|I<|F o+l +|Fif)<2M. (4.1.5)

Let us summarize what we have proved so far: There exists an open set V <I' and there
exists € >0, M < oo, such that | F ()] < M whenever g€A,;(T"), g = 0 outside V, and ||g|| <.
By translation, we may assume that V is a neighborhood of 0.
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4.2. We now consider three cases.

Case A. Suppose I' is totally disconnected. Then the open set V which we have just
described contains an open-closed subgroup I'; of I" [11; p. 19], and the result of 4.1 implies
that || F (g)|| < M for every g€A(I",), provided ||g| <e.

Sinee I'; is compact, 4 (I';) = B(I',), so that Lemma 2.4 applies, and we conclude that
F is analytic near the origin.

Case B. Suppose T i3 the unit circle (this is the case to which the original theorem of
Wiener and Lévy applied). Our set ¥ is now a segment ( — 4, ), where 0 <4 <z. If0 <2b <4,

define
1 if |6]<b,

Qs (%) = 2—@ if b<|6]|<2b,
0 if 2b<|6|<n.
It is then easy to see, as in Lemma 1.2, that @, € 4 (I'), and

1<||@|l<2. (4.2.1)

We now consider any f€4,(I") for which ||f||<&/2. Set a=x/6N, where N is
a positive integer and 3 Né>2x. Then

| Qea- Fll <2l fll <e, (4.2.2)
and @Qq,-f vanishes outside V. Hence

| F(@ea-f)ll< M, (4.2.3)
and the identity
Qa'F(f)zQa'F(QZa'f)’ (4.2.4)

together with (4.2.1) and (4.2.3), implies that
e Fpl<2m. (4.2.5)

It is now clear that (4.2.5) also holds if @, is replaced by any of its translates.

Since there are N of these translates, say Qg 1, ..., @on, Whose sum is 1, we have
N
F(f)=§Qa,k~F(f), and we conclude that || F (f)||<2MN.

Since A(I") = B(I'), Lemma 2.4 applies, so that F is again analytic near the origin.

Case C. Suppose I is not totally disconnected.

Since I" is not zero-dimensional, G' contains an element of infinite order [11; p. 111],
50 that G contains an infinite cyclic group Z. Let I'; be the group of all y€I" such that
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(z, y) =1 whenever z€Z. Then I'/T; is isomorphic to the circle group, and if F operates in
A(T'), then F also operates on those functions in 4 (I') which are constant on the cosets of
I';. This takes us back to Case B.

4.3. We can now prove Theorem 2 under the assumption that I is compact.
We have already proved that F' is analytic at the origin. Suppose — 1 <a <1, and put

F,)=F@+(1-|a|)t)y—F(a) (—1<t<]). (4.3.1)

Since F, evidently operates in A(I"), F, is analytic at the origin, which implies that
F is analytic at a. To prove analyticity of F at the end-points of I, put

Fi)y=FQ1-t*) (-1<t<]). (4.3.2)

Again, F, operates in A (I'); since F, is an even function, we have

F, (t)=%cn 2" (—d<t<d) (4.3.3)
for some ¢ >0. Hence

F(l—x)=§cn " (0<z<d?), 4.3.4)

and this proves that F is analytic at the right end-point of I. The other end-point can be
treated similarly, and the proof is complete for compact I'.

4.4. We shall prove Theorem 2 for non-compact groups with the aid of the following
structure theorem [11; p. 110].

Every locally compact abelian group T’ contains an open subgroup Iy which is the direct
sum of a compact group H and a p-dimensional euclidean space R®.

(Note that open subgroups are also closed [11; p. 13].)

4.5. Suppose now that I is not discrete. If F operates in 4 (I'), then F also operates in
A (Ty), and we consider two cases (in the notation of 4.4): p =0 or p >0,

If p =0 then I'; is compact, and since I'y is not discrete, I', is infinite. The conclusion
of Theorem 2 then follows from 4.3.

If p > 0, we observe that F also operates in the subalgebra of 4 (T'y) consisting of those
fe A (I'y) which are constant on the cosets of H; that is to say, F operates in A (R?). We
shall prove that this implies that F operates in 4 (T?), where T is the p-dimensional torus;
the analyticity of F on I will then again follow from 4.3.

With every f€A4,(T”) we associate a function f*, defined on R® by

[ (@, oo ) = f, ..., €%P),
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which has period 2 7z in each of the variables z,, ..., #,. Choose a function ¢ € 4 (B?) whose

range lies in I, such that
gy, .z =1 0<2;<2m, 1<7<p),

and such that g vanishes outside some compact set. Then f* g € 4, (R?), so that F (f*g) € A (R?).
Since (f*g)(x) = f*(x) over a full period of f*, we conclude that F operates in 4 (7).
This completes the proof of Theorem 2.

V. Proof of Theorem 3
5.1. In our proof of Theorem 3, the fact that F is defined only on the interval [, and

not on the whole real axis, causes some inconvenience. To avoid this, let us consider the
functions ‘
D, @)=7F (sinz), Py(x)=F (bsinz) (—oo<ar<oo), (5.1.1)

where 0 <b < 1. Since every entire function operates in B(I), so do @, and ®, if F does.
Suppose we can prove that ®; and ®, can be extended to entire functions in the

complex plane, and let us solve for F: we obtain

b, (arc sin 95) (—b<a<b).

®, (arc sin z) (—-1<z<1),
F(x)={ '
b

The first of these formulas shows that F can be expanded in a power series about the origin,
and that this power series can be analytically continued to a (possibly multi-valued) func-
tion in the whole plane, except for possible branch points at 2 = + 1. The second formula
shows, in the same way, that x = + b are the only possible singular points of F in the finite
plane. Since b= 1, we conclude that the analytic extension of F is an entire function.

These remarks show: It suffices to prove Theorem 3 under the stronger assumption that
F is defined on the whole real axis, and has period 2 7.

5.2. We next show that it suffices to prove Theorem 3 for countable discrete groups I'.

Let T'y be the open subgroup of I' which is mentioned in the structure theorem 4.4.
If I'y has infinitely many cosets in I, and if F operates in B(I"), then F operates in the al-
gebra of all f€ B(I") which are constant on these cosets, which means that F operates in
B(I';), where I'; is the discrete quotient group I'/T. It is clear that F then also operates
in B(I',), where I'; is any countable subgroup of I';.

If 'y has only finitely many cosets in T', then p > 0 (in the notation of 4.4), since I' is
not compact, and we observe that F operates in the subalgebra of all f€ B(I') which are
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constant on the cosets of H in I') and which vanish outside I'y. This means that ¥ operates
in B(RP). Let A” be. the p-dimensional lattice group in R?, i.e., the set of all points x =
(%4, ..., xp) in R? all of whose coordinates are integers. It is quite easy to see that the
restriction of every f€ B(R®) to AP belongs to B(A?), and conversely that every f€ Bz (AP)
can be extended to R so as to belong to By(R?). Hence F operates in B(AP).

Hence Theorem 3 will follow if we can show that the entire functions are the only ones
which operate in B(I'), for any countable discrete group I'.

5.3. Consider now the following two conditions on a function F, defined on the real
axis, with period 2 x:
() F operates in B(I') for some countable discrete group I
(B) For some countable discrete group T, there is associated with every r > 0 a number M (r) < oo,

such that

| Fo Py, <M (r),

whenever P is a polynomial on G, with real coefficients, whose norm satisfies
1Pl <.

(We refer to 3.1 for the notation F o P; the norms here are the L!-norms over the com-
pact group G.)

Suppose (#) holds. Choose 5 > 0, and suppose f € Bg(T'), with {|f|| <%. Then||f +¢| <n+-
+x if ¢ is & constant and =z <¢ <z. We apply (f) with r =2(y +=), and we apply a
slight modification of Lemma 3.2 (R in place of I) withe =% +x, M = M (25 + 2 n); the
periodicity of F then implies that

IF(f+e) | <SM@2y+2a) (—o0<c<oo).

By Lemma 2.3, F can therefore be extended to a function which is analytic in the strip
ly| <=
Since this is true for every 7, we see that the entire functions are the only ones which
satisfy (8). On the other hand, our discussion in 5.1 and 5.2 shows that Theorem 3 will
be proved if we can show that the entire functions are the only ones which satisfy ().
Hence the proof will be complete if we can show that («) implies (§). We shall do this
in two steps:
Step 1: If (a) holds for some I' of bounded order, then (§) holds for the same I'.
Step 2: If () holds for some I" which is not of bounded order, then (8) holds for the group of
all integers.
(We refer to the definition which follows Lemma 2.5.)
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5.4. Proof of Step 1. We may assume, without loss of generality, that I' is the direct
sum of infinitely many cyeclic groups, all of which have the same order. To justify this
simplification, we remark (1) that if 5.3 («) holds for some I, then it holds for every infinite
subgroup of I, (2) that every group of bounded order is a direct sum of cyclic groups [5;
p. 17] and (3) that among these direct summands infinitely many have the same order.

If 5.3(B) is false, then for some r > 0 there are polynomials P, on G, with real coeffi-
cients, such that ||P,}; <7, but

|FOP,|,—~o0 (n—>oo). (5.4.1)

Let E, be the smallest subgroup of I' which contains the support of P,. It is clear
that each E, is a finite group; hence we can choose y, in the complement of &,, and we
let I, be the group generated by E, and y,. The simplifying assumption made in the first
paragraph of 5.4 shows that we can transform the polynomials P, by automorphisms ¢,
of T, replacing = P, (y) (x,y) by = P, (y) (z,t,¥), so that no two of the groups I, have a non-
zero element in common,; these transformations do not change any of the norms with which
we are concerned, and we assume that they are carried out.

We shall show that the assumption |P,|, <r for n =1, 2, 3, ... implies that there is

a measure y on G, with p real, such that
pY+y)=Puly) (y€E;n=1,23,..) (5.4.2)

Once this is done, we let K, be the characteristic function of the set E, + y,; obviously
R, €B(T), and since E, is a group, || K,| = 1. Also, F(u)eB(T), by 5.3(a), and

F(P,(y))=F(aly +y.) Ry +y,)

for all y€I'. Hence || FoP,|, < | F(u)], contradicting (5.4.1).
The problem is thus reduced to exhibiting a measure on G' which satisfies (5.4.2).

Let S be the linear space of all finite sums f of the form
fx) =Z(2,9,)Qn(x) (z€G), (5.4.3)

where the @, are polynomials, such that @,, is real and has its support in £,. Our assump-
tions about the groups I';, show that each f€S has a unique representation of the form
(5.4.3). Since y, ¢ E,, (z, y,) takes each of its values on each of the subsets of ¢ on which @,

is constant; hence
max Re [(z, yn) @n ()] >} | @n |, (5.4.4)

where || ||, denotes the supremum norm.
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Moreover, our assumptions about I', imply that if n= m, then each of the sets on
which (z,y,) @, () is constant intersects each of the sets on which (z,y,,) @ (%) is constant,
and we conclude from (5.4.4) that

1flleo =33 || @nllo (5.4.5)

if f is given by (5.4.3).
We consider S as a subspace of C(G), the space of all continuous functions on G;
by (5.4.5), the mapping

f>Ti=3[Qu(—2)Pr(x)dx (5.4.6)
G

is a linear functional on 8, of norm at most 27, which can be extended, by the Hahn-
Banach Theorem, to a bounded linear functional on C(G). Thus there is a measure u on G,
such that

Jf(—x)d#(x)=2f0,.(—x)Pn(x)dr (5.4.7)

for all f of the form (5.4.3).

In particular, if we fix y€ E, and take f(z) =(=,y + ¥,), then (5.4.7) applies, and gives
precisely (5.4.2). Finally, if 2 (y) is not real for all y €T, we replace i by its real part; since
P, (y) is real, this change does not affect (5.4.2), and since Re[u]€B(T"), the proof is com-
plete.

Remark: If F had been defined only on I, and P, (y) had been in I, it is not clear
that we can find u such that (5.4.2) holds, with u (y) €I for all y €T, and hence F (1) might
not be defined. This is one of our reasons for making the simplifying assumptions 5.1 at

the very beginning of the proof of Theorem 3.

5.5. Proof of Step 2. This is similar in outline to the proof of Step 1, but the details are
a little more complicated.

We assume that F, defined on the real axis, operates in B(I"), where I is a discrete
group which is not of bounded order, and, to obtain a contradiction, we assume that
5.3 (8) does not hold for the group of all integers. That is to say, we assume that there

are polynomials with real coefficients,

N,
1
Py (%) =3 ay e (5.5.1)
iy
]

such that
NPh<r (=1,2,3, ..) (5.5.2)
but
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| FoP,—~c  (j—>oc0). (5.5.3)

The norms here are the IL*-norms with respect to the Haar measure of the unit
circle,

Consider polynomials of the form

2¥¢ ;
Q ()= 2 bus e (5.5.4)
=~ vy

Since

ZNj 2N;
@M< 2 [n]{bas[<[ @l 3 |2]<5N} (@],
— 2Nj --2N;
there exists an integer m; and a J;>0, depending only on N;, such that

Re [¢™ Q; (¢°)]> 11| @]l (5.5.5)
on some arc of length 4.

By Lemma 2.5, G contains an element xg of infinite order; hence there are real
numbers o; and elements z, €' (=1, 2, 3, ...) such that

() (2o, y3) = e%, 0<4n o1 <0 0413
(b) the order of y, exceeds 2m;+ 6N, and the sets
E,z{kyjIMj—lengM7+2N]}
are disjoint.
Having done this, we associate polynomials P}, @ on @ with P; and Q;:

Ni
P (2) = (@ my3) By (2 9) = 2 oy (@, )",

2Ny

Q7 (2)=(x, myy;) @ (z, y)) = 2> baj(2, g™+,

— 2Ny

and we let § be the linear subspace of C((F) which consists of all finite sums of
the form

f@=2¢/ @) (@€G); (5.5.6)

S depends on {N,}, {m;}, {;}, and {y;}, and property (b) of {y;} implies that each
€8 has a unique representation of the form (5.5.6). Since

QF (nxy)-=emmaQ(ém®)  (n=0, +1, +2, ...), (5.5.7)

(5.5.5) shows that
Re [@] (nz0)]>}[| @)l
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for repeated stretches of [d;/a;] consecutive integers n. If n were a continuous vari-
able, 2x/a; would be a period of @} (nx,), by (5.5.7), and property (a) of {a;} im-
plies that this period is less than one half of [;,1/a;,1]- From this it follows that

sup Re [f (nz0)] >} 2 [| @)l
for every f of the form (5.5.6), and hence

17 lleo =3 2 11 @ llees (5.5.8)

note that ||f|l, is the supremum of |f| over @, whereas || @, refers to the unit
circle.

We insert here a remark concerning the relation between ||Q,||, and ||Q}],, the
L'.norms over the unit circle and over G, respectively. If y; is of infinite order,
then ||Q,|,=1|@f|l,. But if y;, has order g, say, then

13 2nin
||97I|1=f|Q;((x, y,)>|dx=; > Q,(exp ) ,
¢ =
and this differs from
@n+yn/q
s 1 in

leh=25= [ leela0

@n-lnlq

by not more than
T ' S5n
2@l <"z M7l @l <ill el

by property (b) of {y;}. Hence, in any case, we have
@1l > 811 @sll,- (5.5.9)

Returning to our proof, we note that (5.5.2) and (5.5.8) imply that the mapping
1 [ ,_
f~11=35= [ @ P a0

is a bounded linear functional on S; hence there is a measure u on G (with real u;
see 5.4), such that

ff(—x)du(x)=2% fQ,(e“")P, (%) d6 (5.5.10)
G -z

for every f of the form (5.5.8).



154 H. HELSON, J.-P. KAHANE, Y. KATZNELSON, AND W. RUDIN

In particular, if y€E, and f(z)=(z, y), then (5.5.10) applies, since y= (m;+1)y;,
with |t|<2N,, and we obtain

. 1 .
)= f &9 P, () d0=a, = B} (m; g, + ty) = P} (y).

If we now define

1 if y==(m,+l)y, &nd ltlgN/,

Kj(y)= 2‘|—]\tTI if y=(m,+l)y, and NI<|tI<2Nh
j

0 for all other y€T,
then )
Ri)F(uy)=F (P} (y) (yeT),

so that | FoP}||,<2||F(x)||. Since (5.5.9) applies to Fo P; in place of Q,, we have
[FoP|,<2||FoPf{ <4 F(m)|| (=128, ..), (6.1.1)

contradicting (5.5.3).
This completes the proof of Theorem 3.

VI. Consequences of Theorem 3

6.1. Let M (G) be the convolution algebra of all bounded complex Borel measures on
@; M (@) is isomorphic to B(I'), it is a commutative Banach algebra with unit, and it there-
fore has a compact maximal ideal space A. We may think of A as the set of all homomor-
phisms & of M (G) onto the complex field, and we define the Gelfand transform z, as a

function on A, by

Am)=h(u) (WEM (@) (6.1.1)

With every y€I' these is associated a homomorphism

p=hy (@)= [ (2, 9)du@) (€M () (6.1.2)

and we may thus consider I" as a subset of A. Comparison with our earlier definition of 7
shows that every f€ B(I") may be extended to a Gelfand transform on A (the uniqueness
theorem for Fourier-Steltjes transforms shows that there is only one such extension) and,
conversely, that the restrictions of the Gelfand transforms to I' belong to B(I'). We also

note that our embedding of I into A is & homeomorphism.
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We now show that the range of a Gelfand transform can extend into the imaginary

part of the complex plane, although the corresponding Fourier-Stieltjes transform is real:

6.2. LEMMA. Suppose I' is not compact, and let zy be a complex number. Then there
exists a measure y on G whose Fourier-Stieltjes transform has its range in the interval [ —1,1]

on the real axis, such that h(u) =z, for some h€EA.

Proof: If this were not so, then the function

F(z)=(x—2)"! (—-1<z<])

would operate in B(T"), by one of the basic theorems of the Gelfand theory of normed rings,
and this would contradict Theorem 3.’

6.3. THEOREM. Suppose F is defined in the whole complex z-plane, and suppose F
operates in the algebra of all Gelfand transforms of measures on G, where G 18 not discrete (i.e.,
I" is not compact). Then F is an entire function of 2.

(The hypothesis may be restated by saying that F associates with each p€M(G) a
measure ¢ €M (G) such that k(o) = F(h(u)) for every hEA.)

Proof. The restriction of F to the real axis operates in B(I"), and by Theorem 3 there
is an entire function F, such that F,(z) = F (z) for all real z. Being entire, F, operates in
the algebra of all Gelfand transforms, and so does F — F,. But (F — F,)(f) =0 for every
f€BR(T"). Hence F — F, associates the null-measure to each p€M (G) whose Fourier-
Stieltjes transform is real, and Lemma 6.2 implies that F (z,) — F(ze) = 0 for every complex

2y. The theorem follows.

" Remark A. The proof shows that the hypothesis of the Theorem can be weakened:
it suffices to assume that F operates on the Gelfand transforms of those u € M (@) whose
Fourier-Stieltjes transform has its range in I.

Remark B. The algebra M (G) is said to be asymmelric if the set of all Gelfand trans-
forms is not closed under conjugation, i.e., if the function F (z) =z does not operate in the
algebra of all Gelfand transforms.

Theorem 6.3 shows immediately that M (G) is asymmetric for every non-discrete G;
for the real line this was proved by Sreider [10]; Williamson [14] recently obtained this
result for the general case. (For discrete G, I is compact, A =1", and M (G) = L'(Q) is
symmetric.)

Also, Lemma 6.2 implies that the closure of I' in A is not the Silov boundary of M (G),
and that there are functions f€ B(I") such that /"¢ B(T"), although ! is bounded on T}
on the real line, this phenomenon was noted by Wiener and Pitt [13].

Each of these facts leads to the conclusion that I' is not dense in A, if I" is not compact.
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VIIL. Operating functions defined in plane regions

7.1. A function F, defined on a set E in the plane, is said to be real-analytic if to

every point {z,, y,) € E there is an expansion with complex coefficients

o0

F@, )= 2 tun (x—2)" (Y —y)"

n, mm=0

which converges absolutely for all (v, y)€E such that |x—z,|<d, |y—y,|<é, for
some ¢>0.

If F is defined in the whole plane by a series

F(z, y)=

n,

no,,m
Ap.m X" Y
(]

b8

which converges absolutely for every (z, y), we call F real-entire.
Note that a function may be real-analytic at every point of the plane without being
real-entire: consider
CF(z,y)={1+2)Q+y}"

7.2. Suppose now that F is defined in a plane open set ¥ which contains the origin.
The analogues of Theorems 1, 2, 3 are as follows:

If F operates in A('), and " is discrete, then F is real-analytic in some neighborhood of
the origin; if I" is not discrete, then F is real-analytic in E. If T is not compact and if F operates
in B(T'), then F can be extended to a real-entire function in the plane.

The proofs are almost identical with those of Theorems 1, 2, 3; the only significant
difference is that in place of the functions

O (x) = F(r sin z)
we now introduce doubly periodic functions

D(x,y) =F(r sin z, r sin y)

ei(nz+my);

-]
which we expand in double Fourier series J an,m the coefficients a@u,» can

—00
be estimated as in 2.3.

7.3.1f £ is a closed convex set in the plane, if F, defined in E, operates in 4 (I'), where
I' is not discrete, then one can prove the full analogue of Theorem 2: E is real-analytic on
E (not just in the interior). One uses the result stated in 7.2, and an argument similar to
the one which was used in 4.3 to establish the analyticity of F at the end-points of I.

For closed sets in general, the problem seems to be open.
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7.4. As a final remark, we point out that the converses of Theorems 1, 2, 3 are of course
true; hence we have obtained complete characterizations of the functions which operate
in Ag(I") and By(T).

Since 4 (I') and B(I") are closed under conjugation, it is not hard to see that the con-

verses of the results stated in 7.2 are also valid.
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