Open Access
2014 On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables
Aiting Shen, Ying Zhang, Andrei Volodin
Abstr. Appl. Anal. 2014: 1-7 (2014). DOI: 10.1155/2014/949608

Abstract

Let an,n1 be a sequence of positive constants with an/n and let X,Xn,n1 be a sequence of pairwise negatively quadrant dependent random variables. The complete convergence for pairwise negatively quadrant dependent random variables is studied under mild condition. In addition, the strong laws of large numbers for identically distributed pairwise negatively quadrant dependent random variables are established, which are equivalent to the mild condition n=1PX>an<. Our results obtained in the paper generalize the corresponding ones for pairwise independent and identically distributed random variables.

Citation

Download Citation

Aiting Shen. Ying Zhang. Andrei Volodin. "On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables." Abstr. Appl. Anal. 2014 1 - 7, 2014. https://doi.org/10.1155/2014/949608

Information

Published: 2014
First available in Project Euclid: 2 October 2014

zbMATH: 07023378
MathSciNet: MR3208576
Digital Object Identifier: 10.1155/2014/949608

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top