Open Access
2014 Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System
Shan Zuo, Yongduan Song, Lei Wang, Zheng Zhou
Abstr. Appl. Anal. 2014: 1-10 (2014). DOI: 10.1155/2014/376259


In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG) has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN) is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.


Download Citation

Shan Zuo. Yongduan Song. Lei Wang. Zheng Zhou. "Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System." Abstr. Appl. Anal. 2014 1 - 10, 2014.


Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022253
Digital Object Identifier: 10.1155/2014/376259

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top