Translator Disclaimer
2014 Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity
Shi-you Lin
Abstr. Appl. Anal. 2014: 1-9 (2014). DOI: 10.1155/2014/584169

Abstract

The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using analytic techniques, one proves the Gevrey regularity of the C solutions in non-Maxwellian and strong singularity cases.

Citation

Download Citation

Shi-you Lin. "Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity." Abstr. Appl. Anal. 2014 1 - 9, 2014. https://doi.org/10.1155/2014/584169

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 07022656
MathSciNet: MR3166631
Digital Object Identifier: 10.1155/2014/584169

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.2014 • 2014
Back to Top