Open Access
2014 Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
Daeyeoul Kim, Abdelmejid Bayad, Joongsoo Park
Abstr. Appl. Anal. 2014: 1-6 (2014). DOI: 10.1155/2014/289187

Abstract

We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4) -(1/2)[d|n,d1 (4){E2k(d)+E2k(d-1)}+22k d|n,d1 (2)E2k((d+(-1)(d-1)/2)/2)], U2k(p,q)=22k-2[-((p+q)/2)E2k((p+q)/2+1)+((q-p)/2)E2k ((q-p)/2)-E2k((p+1)/2)-E2k((q+1)/2)+E2k+1((p+q)/2 +1)-E2k+1((q-p)/2)], and F2k(n)=(1/2){σ2k+1(n)-σ2k(n)}. As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.

Citation

Download Citation

Daeyeoul Kim. Abdelmejid Bayad. Joongsoo Park. "Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices." Abstr. Appl. Anal. 2014 1 - 6, 2014. https://doi.org/10.1155/2014/289187

Information

Published: 2014
First available in Project Euclid: 2 October 2014

zbMATH: 07022098
MathSciNet: MR3256242
Digital Object Identifier: 10.1155/2014/289187

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top