Open Access
2014 Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient
Xianbin Wu
Abstr. Appl. Anal. 2014: 1-11 (2014). DOI: 10.1155/2014/396704

Abstract

We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|u|p(x)-2u)+λ|u|p(x)-2u=Fu(x,u,v) in Ω,-div(|v|q(x)-2v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω,u/γ=0=v/γ on Ω. We give several sufficient conditions for the existence of the constant sign solutions, when F(x,·,·) satisfies neither sub-(p(x),q(x)) growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign solutions.

Citation

Download Citation

Xianbin Wu. "Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient." Abstr. Appl. Anal. 2014 1 - 11, 2014. https://doi.org/10.1155/2014/396704

Information

Published: 2014
First available in Project Euclid: 2 October 2014

zbMATH: 07022309
MathSciNet: MR3198183
Digital Object Identifier: 10.1155/2014/396704

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top