Open Access
2014 Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks
Xiao-Li Li, Chao Jia, De-xin Liu, Da-wei Ding
Abstr. Appl. Anal. 2014(SI42): 1-11 (2014). DOI: 10.1155/2014/267609


As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine) neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine) neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control) will be used to improve the control performance. Simulation results are included to complement the theoretical results.


Download Citation

Xiao-Li Li. Chao Jia. De-xin Liu. Da-wei Ding. "Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks." Abstr. Appl. Anal. 2014 (SI42) 1 - 11, 2014.


Published: 2014
First available in Project Euclid: 2 October 2014

zbMATH: 07022055
MathSciNet: MR3214414
Digital Object Identifier: 10.1155/2014/267609

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI42 • 2014
Back to Top