Translator Disclaimer
2014 Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces
Weiliang Xiao, Jiecheng Chen, Dashan Fan, Xuhuan Zhou
Abstr. Appl. Anal. 2014(SI40): 1-11 (2014). DOI: 10.1155/2014/463639

Abstract

We study the Cauchy problem of the fractional Navier-Stokes equations in critical Fourier-Besov spaces F B ˙ p , q 1 - 2 β + 3 / p . Some properties of Fourier-Besov spaces have been discussed, and we prove a general global well-posedness result which covers some recent works in classical Navier-Stokes equations. Particularly, our result is suitable for the critical case β = 1 / 2 . Moreover, we prove the long time decay of the global solutions in Fourier-Besov spaces.

Citation

Download Citation

Weiliang Xiao. Jiecheng Chen. Dashan Fan. Xuhuan Zhou. "Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces." Abstr. Appl. Anal. 2014 (SI40) 1 - 11, 2014. https://doi.org/10.1155/2014/463639

Information

Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022430
MathSciNet: MR3246334
Digital Object Identifier: 10.1155/2014/463639

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.2014 • No. SI40 • 2014
Back to Top