Open Access
2014 Limit Cycles Bifurcated from Some Z 4 -Equivariant Quintic Near-Hamiltonian Systems
Simin Qu, Cangxin Tang, Fengli Huang, Xianbo Sun
Abstr. Appl. Anal. 2014(SI17): 1-15 (2014). DOI: 10.1155/2014/792439

Abstract

We study the number and distribution of limit cycles of some planar Z 4 -equivariant quintic near-Hamiltonian systems. By the theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new distributions. The configurations of limit cycles obtained in this paper are new.

Citation

Download Citation

Simin Qu. Cangxin Tang. Fengli Huang. Xianbo Sun. "Limit Cycles Bifurcated from Some Z 4 -Equivariant Quintic Near-Hamiltonian Systems." Abstr. Appl. Anal. 2014 (SI17) 1 - 15, 2014. https://doi.org/10.1155/2014/792439

Information

Published: 2014
First available in Project Euclid: 3 October 2014

zbMATH: 07023082
MathSciNet: MR3178887
Digital Object Identifier: 10.1155/2014/792439

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI17 • 2014
Back to Top