Open Access
2014 Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays
Hua-Ming Qian, Wei Huang, Biao Liu
Abstr. Appl. Anal. 2014(SI02): 1-11 (2014). DOI: 10.1155/2014/494060


This paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment errors of star sensors in the measurement model, the uncertain attitude estimation model can be established, which indicates that uncertainties not only appear in the state and output matrices but also affect the statistic of the process noise. Meanwhile, the phenomenon of star sensor measurement delays is described by introducing Bernoulli random variables with different delay characteristics. The aim of the addressed attitude estimation problem is to design a filter such that, in the presence of model uncertainties and star sensors delays for the attitude estimation system, the optimized filter parameters can be obtained to minimize the upper bound on the estimation error covariance. Therefore, a finite-horizon robust Kalman filter is proposed to cope with this question. Compared with traditional attitude estimation algorithms, the designed robust filter takes into account the effects of star sensor measurement delays and model uncertainties. Simulation results illustrate the effectiveness of the developed robust filter.


Download Citation

Hua-Ming Qian. Wei Huang. Biao Liu. "Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays." Abstr. Appl. Anal. 2014 (SI02) 1 - 11, 2014.


Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022483
MathSciNet: MR3176749
Digital Object Identifier: 10.1155/2014/494060

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI02 • 2014
Back to Top