Open Access
2013 Periodic Solutions of Duffing Equation with an Asymmetric Nonlinearity and a Deviating Argument
Zaihong Wang, Jin Li, Tiantian Ma
Abstr. Appl. Anal. 2013: 1-8 (2013). DOI: 10.1155/2013/507854

Abstract

We study the existence of periodic solutions of the second-order differential equation x ′′ + a x + - b x - + g ( x ( t - τ ) ) = p ( t ) , where a , b are two constants satisfying 1 / a + 1 / b = 2 / n , n N , τ is a constant satisfying 0 τ < 2 π , g , p : R R are continuous, and p is 2 π -periodic. When the limits lim x ± g ( x ) = g ( ± ) exist and are finite, we give some sufficient conditions for the existence of 2 π -periodic solutions of the given equation.

Citation

Download Citation

Zaihong Wang. Jin Li. Tiantian Ma. "Periodic Solutions of Duffing Equation with an Asymmetric Nonlinearity and a Deviating Argument." Abstr. Appl. Anal. 2013 1 - 8, 2013. https://doi.org/10.1155/2013/507854

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1302.34104
MathSciNet: MR3132543
Digital Object Identifier: 10.1155/2013/507854

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top