Open Access
2013 Lazer-Leach Type Conditions on Periodic Solutions of Liénard Equation with a Deviating Argument at Resonance
Zaihong Wang
Abstr. Appl. Anal. 2013: 1-10 (2013). DOI: 10.1155/2013/906972

Abstract

We study the existence of periodic solutions of Liénard equation with a deviating argument x ′′ + f ( x ) x ' + n 2 x + g ( x ( t - τ ) ) = p ( t ) , where f , g , p : R R are continuous and p is 2 π -periodic, 0 τ < 2 π is a constant, and n is a positive integer. Assume that the limits l i m x ± g ( x ) = g ( ± ) and l i m x ± F ( x ) = F ( ± ) exist and are finite, where F ( x ) = 0 x f ( u ) d u . We prove that the given equation has at least one 2 π -periodic solution provided that one of the following conditions holds: 2 c o s ( n τ ) [ g ( + ) - g ( - ) ] 0 2 π p ( t ) s i n ( θ + n t ) d t , for all θ [ 0,2 π ] , 2 n c o s ( n τ ) [ F ( + ) - F ( - ) ] 0 2 π p ( t ) s i n ( θ + n t ) d t , for all θ [ 0,2 π ] , 2 [ g ( + ) - g ( - ) ] - 2 n s i n ( n τ ) [ F ( + ) - F ( - ) ] 0 2 π p ( t ) s i n ( θ + n t ) d t , for all θ [ 0,2 π ] , 2 n [ F ( + ) - F ( - ) ] - 2 s i n ( n τ ) [ g ( + ) - g ( - ) ] 0 2 π p ( t ) s i n ( θ + n t ) d t , for all θ [ 0,2 π ] .

Citation

Download Citation

Zaihong Wang. "Lazer-Leach Type Conditions on Periodic Solutions of Liénard Equation with a Deviating Argument at Resonance." Abstr. Appl. Anal. 2013 1 - 10, 2013. https://doi.org/10.1155/2013/906972

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1277.34102
MathSciNet: MR3055862
Digital Object Identifier: 10.1155/2013/906972

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top