Open Access
2013 Bregman Distance and Strong Convergence of Proximal-Type Algorithms
Li-Wei Kuo, D. R. Sahu
Abstr. Appl. Anal. 2013: 1-12 (2013). DOI: 10.1155/2013/590519


The purpose of this paper is to discuss some fundamental properties of Bregman distance, generalized projection operators, firmly nonexpansive mappings, and resolvent operators of set-valued monotone operators corresponding to a functional Φ ( · ) . We further study some proximal point algorithms for finding zeros of monotone operators and solving generalized mixed equilibrium problems in Banach spaces. Our results improve and extend some recent results concerning generalized projection operators corresponding to Bregman distance.


Download Citation

Li-Wei Kuo. D. R. Sahu. "Bregman Distance and Strong Convergence of Proximal-Type Algorithms." Abstr. Appl. Anal. 2013 1 - 12, 2013.


Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 07095145
MathSciNet: MR3073512
Digital Object Identifier: 10.1155/2013/590519

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top