Open Access
2013 A Best Proximity Point Result in Modular Spaces with the Fatou Property
Mohamed Jleli, Erdal Karapınar, Bessem Samet
Abstr. Appl. Anal. 2013(SI57): 1-4 (2013). DOI: 10.1155/2013/329451

Abstract

Consider a nonself-mapping T : A B , where ( A , B ) is a pair of nonempty subsets of a modular space X ρ . A best proximity point of T is a point z A satisfying the condition: ρ ( z T z ) = inf { ρ ( x y ) : ( x , y ) A × B } . In this paper, we introduce the class of proximal quasicontraction nonself-mappings in modular spaces with the Fatou property. For such mappings, we provide sufficient conditions assuring the existence and uniqueness of best proximity points.

Citation

Download Citation

Mohamed Jleli. Erdal Karapınar. Bessem Samet. "A Best Proximity Point Result in Modular Spaces with the Fatou Property." Abstr. Appl. Anal. 2013 (SI57) 1 - 4, 2013. https://doi.org/10.1155/2013/329451

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 1325.41019
MathSciNet: MR3108632
Digital Object Identifier: 10.1155/2013/329451

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI57 • 2013
Back to Top