Open Access
Translator Disclaimer
2013 Adaptive Synchronization for Two Different Stochastic Chaotic Systems with Unknown Parameters via a Sliding Mode Controller
Zengyun Wang, Lihong Huang, Xuxin Yang, Dingyang Lu
Abstr. Appl. Anal. 2013(SI37): 1-12 (2013). DOI: 10.1155/2013/452549

Abstract

This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems (Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.

Citation

Download Citation

Zengyun Wang. Lihong Huang. Xuxin Yang. Dingyang Lu. "Adaptive Synchronization for Two Different Stochastic Chaotic Systems with Unknown Parameters via a Sliding Mode Controller." Abstr. Appl. Anal. 2013 (SI37) 1 - 12, 2013. https://doi.org/10.1155/2013/452549

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 1291.93087
MathSciNet: MR3064391
Digital Object Identifier: 10.1155/2013/452549

Rights: Copyright © 2013 Hindawi

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.2013 • No. SI37 • 2013
Back to Top