Open Access
2013 Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments
Cristóbal González, Antonio Jiménez-Melado
Abstr. Appl. Anal. 2013(SI28): 1-7 (2013). DOI: 10.1155/2013/957696

Abstract

In this paper, we propose the study of an integral equation, with deviating arguments, of the type y ( t ) = ω ( t ) - 0 f ( t , s , y ( γ 1 ( s ) ) , , y ( γ N ( s ) )) d s , t 0 , in the context of Banach spaces, with the intention of giving sufficient conditions that ensure the existence of solutions with the same asymptotic behavior at as ω ( t ) . A similar equation, but requiring a little less restrictive hypotheses, is y ( t ) = ω ( t ) - 0 q ( t , s ) F ( s , y ( γ 1 ( s ) ) , , y ( γ N ( s ) )) d s , t 0 . In the case of q ( t , s ) = ( t - s ) + , its solutions with asymptotic behavior given by ω ( t ) yield solutions of the second order nonlinear abstract differential equation y ' ' ( t ) - ω ' ' ( t ) + F ( t , y ( γ 1 ( t ) ) , , y ( γ N ( t ) ) ) = 0 , with the same asymptotic behavior at as ω ( t ) .

Citation

Download Citation

Cristóbal González. Antonio Jiménez-Melado. "Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments." Abstr. Appl. Anal. 2013 (SI28) 1 - 7, 2013. https://doi.org/10.1155/2013/957696

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 07095536
MathSciNet: MR3147793
Digital Object Identifier: 10.1155/2013/957696

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI28 • 2013
Back to Top