Open Access
2013 Approximation of Eigenvalues of Sturm-Liouville Problems by Using Hermite Interpolation
M. M. Tharwat, S. M. Al-Harbi
Abstr. Appl. Anal. 2013(SI25): 1-14 (2013). DOI: 10.1155/2013/412028


Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. In this paper, we use the derivative sampling theorem “Hermite interpolations” to compute approximate values of the eigenvalues of Sturm-Liouville problems with eigenvalue parameter in one or two boundary conditions. We use recently derived estimates for the truncation and amplitude errors to compute error bounds. Also, using computable error bounds, we obtain eigenvalue enclosures. Also numerical examples, which are given at the end of the paper, give comparisons with the classical sinc method and explain that the Hermite interpolations method gives remarkably better results.


Download Citation

M. M. Tharwat. S. M. Al-Harbi. "Approximation of Eigenvalues of Sturm-Liouville Problems by Using Hermite Interpolation." Abstr. Appl. Anal. 2013 (SI25) 1 - 14, 2013.


Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 06306809
MathSciNet: MR3126753
Digital Object Identifier: 10.1155/2013/412028

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI25 • 2013
Back to Top