Open Access
2013 A Pressure-Stabilized Lagrange-Galerkin Method in a Parallel Domain Decomposition System
Qinghe Yao, Qingyong Zhu
Abstr. Appl. Anal. 2013(SI13): 1-13 (2013). DOI: 10.1155/2013/161873


A pressure-stabilized Lagrange-Galerkin method is implemented in a parallel domain decomposition system in this work, and the new stabilization strategy is proved to be effective for large Reynolds number and Rayleigh number simulations. The symmetry of the stiffness matrix enables the interface problems of the linear system to be solved by the preconditioned conjugate method, and an incomplete balanced domain preconditioner is applied to the flow-thermal coupled problems. The methodology shows good parallel efficiency and high numerical scalability, and the new solver is validated by comparing with exact solutions and available benchmark results. It occupies less memory than classical product-type solvers; furthermore, it is capable of solving problems of over 30 million degrees of freedom within one day on a PC cluster of 80 cores.


Download Citation

Qinghe Yao. Qingyong Zhu. "A Pressure-Stabilized Lagrange-Galerkin Method in a Parallel Domain Decomposition System." Abstr. Appl. Anal. 2013 (SI13) 1 - 13, 2013.


Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 06306078
MathSciNet: MR3073474
Digital Object Identifier: 10.1155/2013/161873

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI13 • 2013
Back to Top