Open Access
2013 The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems
Dumitru Baleanu, Sayyedeh Zahra Nazemi, Shahram Rezapour
Abstr. Appl. Anal. 2013(SI05): 1-15 (2013). DOI: 10.1155/2013/368659

Abstract

We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D 0 + α u ( t ) + f 1 ( t , u ( t ) , v ( t ) , ( ϕ 1 u ) ( t ) , ( ψ 1 v ) ( t ) , D 0 + p u ( t ) , D 0 + μ 1 v ( t ) , D 0 + μ 2 v ( t ) , , D 0 + μ m v ( t ) ) = 0 , D 0 + β v ( t ) + f 2 ( t , u ( t ) , v ( t ) , ( ϕ 2 u ) ( t ) , ( ψ 2 v ) ( t ) , D 0 + q v ( t ) , D 0 + ν 1 u ( t ) , D 0 + ν 2 u ( t ) , , D 0 + ν m u ( t ) ) = 0 , u ( i ) ( 0 ) = 0 and v ( i ) ( 0 ) = 0 for all 0 i n - 2 , [ D 0 + δ 1 u ( t ) ] t = 1 = 0 for 2 < δ 1 < n - 1 and α - δ 1 1 , [ D 0 + δ 2 v ( t ) ] t = 1 = 0 for 2 < δ 2 < n - 1 and β - δ 2 1 , where n 4 , n - 1 < α , β < n , 0 < p , q < 1 , 1 < μ i , ν i < 2 ( i = 1,2 , , m ) , γ j , λ j : [ 0,1 ] × [ 0,1 ] ( 0 , ) are continuous functions ( j = 1,2 ) and ( ϕ j u ) ( t ) = 0 t γ j ( t , s ) u ( s ) d s , ( ψ j v ) ( t ) = 0 t λ j ( t , s ) v ( s ) d s . Here D is the standard Riemann-Liouville fractional derivative, f j ( j = 1,2 ) is a Caratheodory function, and f j ( t , x , y , z , w , v , u 1 , u 2 , , u m ) is singular at the value 0 of its variables.

Citation

Download Citation

Dumitru Baleanu. Sayyedeh Zahra Nazemi. Shahram Rezapour. "The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems." Abstr. Appl. Anal. 2013 (SI05) 1 - 15, 2013. https://doi.org/10.1155/2013/368659

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 1294.45005
MathSciNet: MR3132540
Digital Object Identifier: 10.1155/2013/368659

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI05 • 2013
Back to Top