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Let K be a closed convex subset of a real Hilbert space H and let T : K → K be a continuous
pseudocontractive mapping. Then for β ∈ (0, 1) and each t ∈ (0, 1), there exists a sequence {yt} ⊂ K
satisfying yt = βPK[(1 − t)yt] + (1 − β)T(yt)which converges strongly, as t → 0+, to the minimum-
norm fixed point of T.Moreover, we provide an explicit iteration process which converges strongly
to a minimum-norm fixed point of T provided that T is Lipschitz. Applications are also included.
Our theorems improve several results in this direction.

1. Introduction

Let K be a nonempty subset of a real Hilbert space H. A mapping T : K → H is called
Lipschitz if there exists L ≥ 0 such that

∥
∥Tx − Ty∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ K. (1.1)

If L ∈ [0, 1), then T is called a contraction; if L = 1 then T is called a nonexpansive. It is easy
to see from (1.1) that every contraction mapping is nonexpansive, and every nonexpansive
mapping is Lipschitz.

A mapping T is called strongly pseudocontractive if there exists α ∈ (0, 1) such that
inequality

〈

Tx − Ty, x − y〉 ≤ α∥∥x − y∥∥2
, (1.2)
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holds for all x, y ∈ K. T is called pseudocontractive if the inequality

〈

Tx − Ty, x − y〉 ≤ ∥
∥x − y∥∥2

, (1.3)

holds for all x, y ∈ K. Note that inequality (1.3) can be equivalently written as

∥
∥Tx − Ty∥∥2 ≤ ∥

∥x − y∥∥2 +
∥
∥(I − T)x − (I − T)y∥∥2

, ∀x, y ∈ K. (1.4)

It is easy to see that nonexpansive and strongly pseudocontractive mappings are
pseudocontractive mappings. However, the converse may not be true (see [1, 2] for details).

Interest in pseudocontractive mappings stems mainly from their firm connection with
the important class of nonlinear monotonemappings, where a mappingAwith domainD(A)
and range R(A) inH is called monotone if the inequality

〈

Ax −Ay, x − y〉 ≥ 0, (1.5)

holds for every x, y ∈ D(A). We note that A is monotone if and only if T := I − A is
pseudocontractive, and hence a zero of A, N(A) := {x ∈ D(A) : Ax = 0} is a fixed point
of T , F(T) := {x ∈ D(T) : Tx = x}.

LetK be a nonempty closed convex subset of a real Hilbert spaceH and T : K → K a
pseudcontractive mapping. Assume that the set of fixed points of T is nonempty. It is known
from [3] that F(T) is closed and convex.

Let the variational inequality (VI) be given as finding a point x∗ with the property that

x∗ ∈ F(T) such that 〈x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T). (1.6)

Then, x∗ is the minimum-norm fixed point of T which exists uniquely and is exactly the
(nearest point or metric) projection of the origin onto F(T), that is, x∗ = PF(T)(0). We also
observe that the minimum-norm fixed point of pseudocontractive T is the minimum-norm
solution of a monotone operator equation Ax = 0, where A = (I − T).

It is quite often to seek the minimum-norm solution of a given nonlinear problem. In
an abstract way, we may formulate such problems as finding a point x∗ with the property

x∗ ∈ K, ‖x∗‖ = min
x∈K

‖x‖. (1.7)

In other words, x∗ is the projection of the origin onto K, that is,

x∗ = PK(0). (1.8)

A typical example is the split feasibility problem (SFP), formulated as finding a point
x∗ with the property that

x∗ ∈ K, Ax∗ ∈ Q, (1.9)
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where K and Q are nonempty closed convex subsets of the infinite-dimension real Hilbert
spaces H1 and H2, respectively, and A is bounded linear mapping from H1 to H2. Equation
(1.9)models many applied problems arising from image reconstructions and learning theory
(see, e.g., [4]). Someworks on the finite dimensional setting with relevant projectionmethods
for solving image recovery problems can be found in [5–7]. Defining the proximity function
f by

f(x) :=
1
2
∥
∥Ax − PQAx

∥
∥
2
, (1.10)

we consider the convex optimization problem:

min
x∈K

f(x) := min
x∈K

1
2
∥
∥Ax − PQAx

∥
∥
2
. (1.11)

It is clear that x∗ is a solution to the split feasibility problem (1.9) if and only if x∗ ∈ K and
Ax∗ − PQAx∗ = 0 which is the minimum-norm solution of the minimization problem (1.11).

Motivated by the above split feasibility problem, we study the general case of finding
the minimum-norm fixed point of a pseudocontractive mapping T : K → K, that is, we find
minimum norm fixed point of T which satisfies

x∗ ∈ F(T) such that ‖x∗‖ = min{‖x‖ : x ∈ F(T)}. (1.12)

Let T : K → K be a nonexpansive self-mapping on closed convex subset K of a Banach space
E. For a given u ∈ K and for a given t ∈ (0, 1) define a contraction Tt : K → K by

Ttx = (1 − t)u + tTx, x ∈ K. (1.13)

By Banach contraction principle, it yields a fixed point zt ∈ K of Tt, that is, zt is the unique
solution of the equation:

zt = (1 − t)u + tTzt. (1.14)

Browder [8] proved that as t → 1, zt converges strongly to a fixed point of T which is
closer to u, that is, the nearest point projection of u onto F(T). In 1980, Reich [9] extended
the result of Browder to a more general Banach spaces. Furthermore, Takahashi and Ueda
[10] and Morales and Jung [11] improved results of Reich [9] to the class of continuous
pseudocontractive mappings. For other results on pseudocontractive mappings, we refer to
[12–15].

We note that the above methods can be used to find the minimum-norm fixed point
x∗ of T if 0 ∈ K. However, if 0 /∈ K neither Browder’s, Reich’s, Takahashi and Ueda’s, nor
Morales and Jung’s method works to find minimum-norm fixed point of T .

Our concern is now the following: is it possible to construct a scheme, implicit or
explicit, which converges strongly to the minimum-norm fixed point of T for any closed
convex domain K of T?
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In this direction, Yang et al. [4] introduced an implicit and explicit iteration processes
which converge strongly to the minimum-norm fixed point of nonexpansive self-mapping T ,
in real Hilbert spaces. In fact, they proved the following theorems.

Theorem YLY1 (see [4]). Let K be a nonempty closed convex subset of a real Hilbert space H and
T : K → K a nonexpansive mapping with F(T)/= ∅. For β ∈ (0, 1) and each t ∈ (0, 1), let yt be
defined as the unique solution of fixed point equation:

yt = βTyt +
(

1 − β)PK
[

(1 − t)yt
]

, t ∈ (0, 1). (1.15)

Then the net {yt} converges strongly, as t → 0, to the minimum-norm fixed point of T .

Theorem YLY2 (see [4]). Let K be a nonempty closed convex subset of a real Hilbert spaceH, and
let T : K → K be a nonexpansive mapping with F(T)/= ∅. For a given x0 ∈ K, define a sequence
{xn} iteratively by

xn+1 = βTxn +
(

1 − β)PK[(1 − αn)xn], n ≥ 1, (1.16)

where β ∈ (0, 1) and αn ∈ (0, 1), satisfying certain conditions. Then the sequence {xn} converges
strongly to the minimum-norm fixed point of T .

A natural question arises whether the above theorems can be extended to a more
general class of pseudocontractive mappings or not.

Let K be a closed convex subset a real Hilbert space H and let T : K → K be
continuous pseudocontractive mapping.

It is our purpose in this paper to prove that for β ∈ (0, 1) and each t ∈ (0, 1), there exists
a sequence {yt} ⊂ K satisfying yt = βPK[(1 − t)yt] + (1 − β)T(yt) which converges strongly,
as t → 0+, to the minimum-norm fixed point of T . Moreover, we provide an explicit iteration
process which converges strongly to the minimum-norm fixed point of T provided that T is
Lipschitz. Our theorems improve Theorem YLY1 and Theorem YLY2 of Yang et al. [4] and
Theorems 3.1, and 3.2 of Cai et al. [16].

2. Preliminaries

In what follows, we shall make use of the following lemmas.

Lemma 2.1 (see [11]). Let H be a real Hilbert space. Then, for any given x, y ∈ H, the following
inequality holds:

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, x + y
〉

. (2.1)

Lemma 2.2 (see [17]). Let K be a closed and convex subset of a real Hilbert space H. Let x ∈ H.
Then x0 = PKx if and only if

〈z − x0, x − x0〉 ≤ 0, ∀z ∈ K. (2.2)
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Lemma 2.3 (see [18]). Let {λn}, {αn}, and {γn} be sequences of nonnegative numbers satisfying the
conditions: limn→∞αn = 0,

∑∞
n=1 αn = ∞, and γn/αn → 0, as n → ∞. Let the recursive inequality:

λn+1 ≤ λn − αnψ(λn+1) + γn, n = 1, 2, . . . , (2.3)

be given where ψ : [0,∞) → [0,∞) is a strictly increasing function such that it is positive on (0,∞)
and ψ(0) = 0. Then λn → 0, as n → ∞.

Lemma 2.4 (see [3]). LetH be a real Hilbert space, K be a closed convex subset ofH and T : K →
K be a continuous pseudocontractive mapping, then

(i) F(T) is closed convex subset of K;

(ii) (I − T) is demiclosed at zero, that is, if {xn} is a sequence in K such that xn ⇀ x and
Txn − xn → 0, as n → ∞, then x = T(x).

Lemma 2.5 (see [19]). Let H be a real Hilbert space. Then for all x, y ∈ H and α ∈ [0, 1], the
following equality holds:

‖αx + (1 − α)x‖2 = α‖x‖2 + (1 − α)∥∥y∥∥2 − α(1 − α)∥∥x − y∥∥2
. (2.4)

3. Main Results

Theorem 3.1. LetK be a nonempty closed and convex subset of a real Hilbert spaceH. Let T : K →
K be a continuous pseudocontractive mapping with F(T)/= ∅. Then for β ∈ (0, 1) and each t ∈ (0, 1),
there exists a sequence {yt} ⊂ K satisfying the following condition:

yt = βPK
[

(1 − t)yt
]

+
(

1 − β)T(yt
)

(3.1)

and the net {yt} converges strongly, as t → 0+, to the minimum-norm fixed point of T .

Proof. For β ∈ (0, 1) and each t ∈ (0, 1) let Tt(y) := βPK[(1 − t)y] + (1 − β)T(y). Then using
nonexpansiveness of PK and pseudocontractivity of T , for x, y ∈ K, we have that

〈

Ttx − Tty, x − y〉 = β
〈

PK[(1 − t)x] − PK
[

(1 − t)y], x − y〉

+
(

1 − β)〈T(x) − T(y), x − y〉

≤ β(1 − t)∥∥x − y∥∥2 +
(

1 − β)∥∥x − y∥∥2

≤ (

1 − tβ)∥∥x − y∥∥2
.

(3.2)

This implies that Tt is strongly pseudocontractive on K. Thus, by Corollary 1 of [20] Tt has a
unique fixed point, yt, in K. This means that the equation:

yt = βPK
[

(1 − t)yt
]

+
(

1 − β)T(yt
)

(3.3)
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has a unique solution for each t ∈ (0, 1). Furthermore, since F(T)/= ∅, for y∗ ∈ F(T), we have
that

∥
∥yt − y∗∥∥2 =

〈

βPK
[

(1 − t)yt
]

+
(

1 − β)Tyt − y∗, yt − y∗〉

= β
〈

PK
[

(1 − t)yt
] − PKy∗, yt − y∗〉 +

(

1 − β)〈Tyt − Ty∗, yt − y∗〉

≤ β
∥
∥(1 − t)yt − y∗∥∥ · ∥∥yt − y∗∥∥ +

(

1 − β)∥∥yt − y∗∥∥2

≤ β
[

(1 − t)∥∥yt − y∗∥∥ + t
∥
∥y∗∥∥]∥∥yt − y∗∥∥ +

(

1 − β)∥∥yt − y∗∥∥2
,

(3.4)

which implies that

∥
∥yt − y∗∥∥ ≤ β(1 − t)∥∥yt − y∗∥∥ + βt

∥
∥y∗∥∥ +

(

1 − β)∥∥yt − y∗∥∥, (3.5)

and hence ‖yt − y∗‖ ≤ ‖y∗‖. Therefore, {yt} and hence {Tyt} is bounded.
Furthermore, from (3.3) and using nonexpansiveness of PK we get that

∥
∥yt − Tyt

∥
∥ =

∥
∥βPK

[

(1 − t)yt
]

+
(

1 − β)T(yt
) − Tyt

∥
∥

= β
∥
∥PK

[

(1 − t)yt
] − PKTyt

∥
∥

≤ β
∥
∥(1 − t)yt − Tyt

∥
∥

≤ β
∥
∥yt − Tyt

∥
∥ + βt

∥
∥yt

∥
∥,

(3.6)

which implies that

∥
∥yt − Tyt

∥
∥ ≤ β

(

1 − β) t
∥
∥yt

∥
∥ −→ 0, as t −→ 0. (3.7)

Furthermore, from (3.3), convexity of ‖ · ‖2, (1.4), and (3.7), we get that

∥
∥yt − y∗∥∥2 =

∥
∥
(

1 − β)(Tyt − y∗) + β
(

PK
[

(1 − t)yt
] − PKy∗)∥∥2

=
(

1 − β)∥∥Tyt − y∗∥∥2 + β
∥
∥PK

[

(1 − t)yt
] − PKy∗∥∥2

≤ (

1 − β)
[∥
∥yt − y∗∥∥2 +

∥
∥Tyt − yt

∥
∥
2
]

+ β
∥
∥(1 − t)yt − y∗∥∥2

≤ (

1 − β)∥∥yt − y∗∥∥2 +
(

1 − β)∥∥Tyt − yt
∥
∥
2 + β

∥
∥(1 − t)yt − y∗∥∥2

≤ (

1 − β)∥∥yt − y∗∥∥2 +
β2

(

1 − β) t
2∥∥yt

∥
∥
2

+ β
[∥
∥yt − y∗∥∥2 − 2t

∥
∥yt − y∗∥∥2 − 2t

〈

y∗, yt − y∗〉 + t2
∥
∥yt

∥
∥
2
]

.

(3.8)
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This implies that

∥
∥yt − y∗∥∥2 ≤ 〈

y∗, y∗ − yt
〉

+ tM, for some M > 0. (3.9)

Now, for tn → 0, as n → ∞, let {yn := ytn} be a subsequence of {yt} such that yn ⇀ y′. Then,
we have from (3.7) and Lemma 2.4 that y′ ∈ F(T). Furthermore, replacing y∗ by y′ in (3.9)
and the fact that yn ⇀ y′ imply that

∥
∥yn − y′∥∥2 ≤ 〈

y′, y′ − yn
〉

+ tnM −→ 0 , as n −→ ∞, (3.10)

which implies that

yn −→ y′, as n −→ ∞. (3.11)

Thus, from (3.9) and (3.11), we have that

∥
∥y′ − y∗∥∥2 ≤ 〈

y∗, y∗ − y′〉, as n −→ ∞, (3.12)

which is equivalent to the inequality:

〈

y′, y∗ − y′〉 ≥ 0 and hence y′ = PF0. (3.13)

If there is another subsequence {ym} of {yt} such that ym ⇀ y′′, similar argument gives that
y′′ = PF0, which implies, by uniqueness of PF0, that y′′ = y′. Therefore, the net yt −→ y′ = PF0
which is the minimum-norm of fixed point of T . The proof is complete.

We now state and prove a convergence theorem for the minimum-norm zero of a
monotone mapping A.

Theorem 3.2. Let H be a real Hilbert space. Let A : H → H be a continuous monotone mapping
with N(A)/= ∅. Then for β ∈ (0, 1) and each t ∈ (0, 1), there exists a sequence {yt} ⊂ H satisfying
the following condition:

yt = β(1 − t)yt +
(

1 − β)(I −A)yt, (3.14)

and the net {yt} converges strongly, as t → 0+, to the minimum-norm zero of A.

Proof. Let Tx := (I − A)x. Then, we get that T is continuous pseudocontractive mapping
with F(T) = N(A)/= ∅. Moreover, since PH is an identity mapping onH, when A is replaced
with (I − T) scheme (3.14) reduces to scheme (3.1), and hence the conclusion follows from
Theorem 3.1.

If in Theorem 3.1, we consider {tn}, {βn} ⊂ (0, 1) such that tn → 0, βn → 0 and
yn := ytn , the method of proof of Theorem 3.1 provides the following corollary.
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Corollary 3.3. LetK be a nonempty closed and convex subset of a real Hilbert spaceH. Let T : K →
K be continuous pseudocontractive mapping with F(T)/= ∅. Then the sequence {yn} ⊂ K defined by

yn = βnPK
[

(1 − tn)yn
]

+
(

1 − βn
)

T
(

yn
)

, (3.15)

where {tn}, {βn} ⊂ (0, 1) such that tn → 0, βn → 0, as n → ∞, converges strongly, as n → ∞, to
the minimum-norm fixed point of T .

The following proposition and lemma play an important role in proving the next
theorem.

Proposition 3.4. Let K be a nonempty closed and convex subset of a real Hilbert space H. Let T :
K → K be continuous pseudocontractive mapping. Then the sequence {yn} in (3.15) satisfies the
following inequality:

∥
∥yn − yn−1

∥
∥ ≤ |θn−1 − θn|

θntn

[∥
∥yn

∥
∥ +

∥
∥PK

[

(1 − tn)yn−1
]∥
∥
]

+
θn−1
θn

|tn − tn−1|
tn

∥
∥yn−1

∥
∥, (3.16)

where θn := βn/(1 − βn) for {βn} decreasing sequence.

Proof. If we put θn := βn/(1 − βn), (3.15) reduces to

yn = Tyn + θn
(

PK
[

(1 − tn)yn
] − yn

)

. (3.17)

Thus, using pseudocontractivity of T and nonexpansiveness of PK we get that

∥
∥yn − yn−1

∥
∥
2 =

∥
∥Tyn + θn

(

PK
[

(1 − tn)yn
] − yn

) − Tyn−1 − θn−1
(

PK
[

(1 − tn−1)yn−1
] − yn−1

)∥
∥
2

=
∥
∥Tyn − Tyn−1 + θn−1yn−1 − θnyn + θn−1yn − θn−1yn

+θnPK
[

(1 − tn)yn
] − θn−1PK

[

(1 − tn−1)yn−1
]∥
∥
2

=
〈

Tyn − Tyn−1 + θn−1
(

yn−1 − yn
)

+ (θn−1 − θn) yn, yn − yn−1
〉

+
〈

θnPK
[

(1 − tn)yn
] − θnPK

[

(1 − tn)yn−1
]

, yn − yn−1
〉

+
〈

θnPK
[

(1 − tn)yn−1
] − θn−1PK

[

(1 − tn)yn−1
]

, yn − yn−1
〉

+
〈

θn−1PK
[

(1 − tn)yn−1
] − θn−1PK

[

(1 − tn−1)yn−1
]

, yn − yn−1
〉

≤ ∥
∥yn − yn−1

∥
∥
2 − θn−1

∥
∥yn − yn−1

∥
∥
2 + (θn−1 − θn)

∥
∥yn

∥
∥

× ∥
∥yn − yn−1

∥
∥ + θn(1 − tn)

∥
∥yn − yn−1

∥
∥
2

+ (θn − θn−1)
∥
∥PK

[

(1 − tn)yn−1
]∥
∥ · ∥∥yn−1 − yn

∥
∥

+ θn−1|tn − tn−1| ·
∥
∥yn−1

∥
∥
∥
∥yn − yn−1

∥
∥,

(3.18)
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which implies, using the fact that θn is decreasing, that

∥
∥yn − yn−1

∥
∥ ≤ [1 − θn−1 + θn(1 − tn)]

∥
∥yn − yn−1

∥
∥ + |θn−1 − θn|

[∥
∥yn

∥
∥ +

∥
∥PK

[

(1 − tn)yn−1
]∥
∥
]

+ θn−1|tn − tn−1| ·
∥
∥yn−1

∥
∥

≤ (1 − tnθn)
∥
∥yn − yn−1

∥
∥ + |θn−1 − θn|

[∥
∥yn

∥
∥ +

∥
∥PK

[

(1 − tn)yn−1
]∥
∥
]

+ θn−1|tn − tn−1| ·
∥
∥yn−1

∥
∥,

(3.19)

and hence

∥
∥yn − yn−1

∥
∥ ≤ |θn−1 − θn|

θntn

[∥
∥yn

∥
∥ +

∥
∥PK

[

(1 − tn)yn−1
]∥
∥
]

+
θn−1
θn

|tn − tn−1|
tn

∥
∥yn−1

∥
∥. (3.20)

The proof is complete.

For the rest of this paper, let {λn}, {θn} (decreasing) and {tn} be real sequences in
(0, 1] satisfying the following conditions: (i) limn→∞θn = 0 = limn→∞tn; (ii) λn(1 + θn) ≤ 1,
∑
λnθntn = ∞, limn→∞λn/θntn = 0; (iii) limn→∞[θn−1 − θn]/λnθ2nt2n = 0 and limn→∞[tn−1 −

tn]/λnθnt2n = 0. Examples of real sequences which satisfy these conditions are λn = 1/(n +
1)1/2, θn = 1/(n + 1)1/3 and tn = 1/(n + 1)1/14.

Lemma 3.5. Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K → K
be a Lipschitz pseudocontractive mapping with Lipschitz constant L ≥ 0 and F(T)/= ∅. Let a sequence
{xn} be generated from arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − PK[(1 − tn)xn]), (3.21)

for all positive integers n ≥ 1. Then {xn} is bounded.

Proof. We follow the method of proof of Chidume and Zegeye [21]. Since λn/(θntn ) → 0,
there exists N0 > 0 such that λn/(θntn ) ≤ d := 1/(2(3 + L)2 ), for all n ≥ N0. Let x∗ ∈ F(T)
and r > 0 be sufficiently large such that xN0 ∈ Br(x∗) and ‖x∗‖ ≤ r/(2(4 + L)). Now, we show
by induction that {xn} belongs to B := Br(x∗) for all integers n ≥N0. By construction, we have
xN0 ∈ B. Assume that xn ∈ B for any n > N0. Then, we prove that xn+1 ∈ B. Suppose xn+1 is
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not in B. Then ‖xn+1 − x∗‖ > r, and thus from the recursion formula (1.2) and Lemma 2.1 we
get that

‖xn+1 − x∗‖2 = ‖xn − x∗ − λn((xn − Txn) + θn(xn − PK[(1 − tn)xn]))‖2

= ‖xn − x∗‖2 − 2λn〈(xn − Txn)
+θn(xn − PK[(1 − tn)xn]), j(xn+1 − x∗)

〉

= ‖xn − x∗‖2 − 2λnθn〈xn+1 − x∗, xn+1 − x∗〉
+ 2λn〈θn(xn+1 − xn) − (xn − Txn) + θn(PK[(1 − tn)xn] − x∗)

+(xn+1 − Txn+1) − (xn+1 − Txn+1), j(xn+1 − x∗)
〉

.

(3.22)

Since T is pseudocontractive we have 〈xn+1 − Txn+1, j(xn+1 − x∗)〉 ≥ 0. Thus, (3.22) gives

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2λnθn‖xn+1 − x∗‖2

+ 2λn(2 + L)‖xn+1 − xn‖ · ‖xn+1 − x∗‖
+ 2λnθn

〈

PK[(1 − tn)xn] − x∗, j(xn+1 − x∗)
〉

= ‖xn − x∗‖2 − 2λnθn‖xn+1 − x∗‖2

+ 2λn(2 + L)‖xn+1 − xn‖ · ‖xn+1 − x∗‖
+ 2λnθn〈PK[(1 − tn)xn] − PK[(1 − tn)xn+1] + PK[(1 − tn)xn+1]
−PK[(1 − tn)x∗] + PK[(1 − tn)x∗] − x∗, j(xn+1 − x∗)

〉

,

(3.23)

which implies that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2λnθntn‖xn+1 − x∗‖2

+ 2λn(2 + L + (1 − tn))‖xn+1 − xn‖ · ‖xn+1 − x∗‖
+ 2λnθn‖PK[(1 − tn)x∗] − x∗‖ · ‖xn+1 − x∗‖

= ‖xn − x∗‖2 − 2λnθntn‖xn+1 − x∗‖2

+ 2λn(3 + L)[λn‖θn(PK[(1 − tn)xn] − PK[(1 − tn)x∗]

+PK[(1 − tn)x∗] − x∗ + x∗ − xn) + Txn − Tx∗ + x∗ − xn‖]
× ‖xn+1 − x∗‖ + 2λnθntn‖x∗‖ · ‖xn+1 − x∗‖

≤ ‖xn − x∗‖2 − 2λnθntn‖xn+1 − x∗‖2

+ 2λ2n(3 + L)
2‖xn − x∗‖ · ‖xn+1 − x∗‖

+ 2λnθntn(4 + L)‖x∗‖‖xn+1 − x∗‖.

(3.24)
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Since ‖xn+1 − x∗‖ > ‖xn − x∗‖, from (3.24)we get that

‖xn+1 − x∗‖ ≤ λn
θntn

(3 + L)2‖xn − x∗‖ + (4 + L)‖x∗‖, (3.25)

and hence ‖xn+1 − x∗‖ ≤ r, since xn ∈ B, ‖x∗‖ ≤ r/(2(4 + L)) and λn/θntn ≤
1/2(3 + L)2 for all n ≥ N0. But this is a contradiction. Therefore, xn ∈ B for all positive
integers n ≥N0, and hence the sequence {xn} is bounded.

For the next theorem, let {yn} denotes the sequence defined by yn := ysn = snTysn +
(1 − sn)PK[(1 − tn)yn], sn = 1/(1 + θn), for all n ≥ 1, guaranteed by Corollary 3.3 (which
reduces to θn(PK[(1 − tn)yn] − yn) − (yn − Tyn) = 0).

Theorem 3.6. Let K be a nonempty closed convex subset of a real Hilbert spaceH. Let T : K → K
be a Lipschitz pseudocontractive mapping with Lipschitz constant L ≥ 0 and F(T)/= ∅. Let a sequence
{xn} be generated from arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − PK[(1 − tn)xn]), (3.26)

for all positive integers n ≥ 1. Then {xn} converges strongly to the minimum-norm fixed point of T ,
as n → ∞.

Proof. By Lemma 3.5, we have that the sequence {xn} is bounded. Now, we show that it
converges strongly to a minimum-norm fixed point of T . But from (3.26) and Lemma 2.1, we
have that

∥
∥xn+1 − yn

∥
∥
2 ≤ ∥

∥xn − yn
∥
∥
2 − 2λnθn

〈(

xn+1 − yn
)

, j
(

xn+1 − yn
)〉

+ 2λn
〈

θn
(

xn+1 − yn
) − (xn − Txn)

−θn(xn − PK[(1 − tn)xn]), j
(

xn+1 − yn
)〉

=
∥
∥xn − yn

∥
∥
2 − 2λnθn

∥
∥xn+1 − yn

∥
∥
2 + 2λn〈θn(xn+1 − xn)

+
[

θn
(

PK
[

(1 − tn)yn
] − yn

) − (

yn − Tyn
)] − [(xn+1 − Txn+1)

−(yn − Tyn
)]

+ θn
(

PK[(1 − tn)xn] − PK
[

(1 − tn)yn
])

+[(xn+1 − Txn+1) − (xn − Txn)], j
(

xn+1 − yn
)〉

.

(3.27)

Observe that by the property of yn and pseudocontractivity of T we have θn(PK[(1 − tn)yn] −
yn)− (yn −Tyn) = 0 (see (3.17)) and 〈(xn+1 −Txn+1)− (yn −Tyn), j(xn+1 −yn)〉 ≥ 0 for all n ≥ 1.
Thus, we have from (3.27) that

∥
∥xn+1 − yn

∥
∥
2 ≤ ∥

∥xn − yn
∥
∥
2 − 2λnθn

∥
∥xn+1 − yn

∥
∥
2 + 2λn〈θn(xn+1 − xn)

+ θn(PK[(1 − tn)xn] − PK[(1 − tn)xn+1]
+PK[(1 − tn)xn+1] − PK

[

(1 − tn)yn
])

+(xn+1 − Txn+1) − (xn − Txn), j
(

xn+1 − yn
)〉
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≤ ∥
∥xn − yn

∥
∥
2 − 2λnθntn

∥
∥xn+1 − yn

∥
∥
2

+ 2λn(3 + L)‖xn+1 − xn‖ ·
∥
∥xn+1 − yn

∥
∥.

(3.28)

But by Corollary 3.3, we have that {yn} is bounded. Therefore, there existsM1 > 0 such that
max{(3 +L)‖xn+1 − yn‖ · ‖xn − Txn + θn(xn − PK[(1 − tn)xn])‖} ≤M1. Thus from (3.28), we get
that

∥
∥xn+1 − yn

∥
∥
2 ≤ ∥

∥xn − yn
∥
∥
2 − 2λnθntn

∥
∥xn+1 − yn

∥
∥
2 + 2λ2nM1. (3.29)

But using triangle inequality and Proposition 3.4, we have that

∥
∥xn − yn

∥
∥
2 ≤ [∥

∥xn − yn−1
∥
∥ +

∥
∥yn−1 − yn

∥
∥
]2

≤ ∥
∥xn − yn−1

∥
∥
2 +

∥
∥yn−1 − yn

∥
∥M2

≤ ∥
∥xn − yn−1

∥
∥
2 +

|θn−1 − θn|
θntn

M3 +
|tn − tn−1|

tn
M3,

(3.30)

for someM2,M3 > 0, and for all n ≥N0. Now, substituting (3.30) in (3.29) we obtain that

∥
∥xn+1 − yn

∥
∥
2 ≤ ∥

∥xn − yn−1
∥
∥
2 − 2λnθntn

∥
∥xn+1 − yn

∥
∥
2

+ 2λ2nM4 +
θn−1 − θn
θntn

M4 +
|tn − tn−1|

tn
M4,

(3.31)

for some constantM4 > 0. Now, by Lemma 2.3 and the conditions on {λn}, {θn}, and {tn}we
get xn+1 − yn → 0. Consequently, ‖xn − yn‖ → 0 as n → ∞.

Therefore, since by Corollary 3.3 we have that yt → y∗ ∈ F(T), where y∗ is with the
minimum-norm in F(T), we get that {xn} converges strongly to the minimum-norm of fixed
point of T .

Corollary 3.7. Let H be a real Hilbert space. Let A : H → H be a Lipschitz monotone mapping
with Lipschitz constant L ≥ 0 andN(A)/= ∅. Let a sequence {xn} be generated from arbitrary x1 ∈ H
by

xn+1 = xn − λnAxn + λnθntnxn, (3.32)

for all positive integers n. Then {xn} converges strongly to the minimum-norm solution of the equation
Ax = 0.

Proof. Let T := (I − A). Then T is a Lipschitz pseudocontractive mapping with Lipschitz
constant L′ := (L + 1), and the minimum-norm solution of the equation Ax = 0 is the
minimum-norm fixed point of T . Moreover, if we replace T by (I − A) in (3.26), then the
equation reduces to (3.32). Thus, the conclusion follows from Theorem 3.6.
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4. Applications

For the rest of this paper, let H be a Hilbert space and A : H → H a bounded linear
operator. Consider the convexly constrained linear inverse problem, which has extensively
been discussed in the literature (see, e.g., [22]), given by:

x ∈ K , Ax = b, (4.1)

where K is closed and convex subset of H and b ∈ H, which is a special case of the SFP
problem (1.9). Set

ϕ(x) :=
1
2
‖Ax − b‖2. (4.2)

The least-square solution of (4.1) is the least-norm minimizer of the minimization problem
(4.2). Let Ω denote the solution set of (4.2). It is known that Ω is nonempty if and only if
PA(K)(b) ∈ A(K). In this case, Ω has a unique element with minimum norm which is a least-
square solution of (4.1), that is, there exists a unique point x∗ ∈ Ω such that

‖x∗‖ = min{‖x‖ : x ∈ Ω}. (4.3)

We note that ϕ(x) is a quadratic function with gradient:

∇ϕ(x) = A∗(Ax − b), (4.4)

whereA∗ is adjoint ofA. Let γ > 0 and x∗ ∈ Ω. Thus, x∗ is the minimum-norm solution of the
minimization problem (4.2) if and only if x∗ a solution of

γ∇ϕ(x) = γA∗(Ax − b) = 0. (4.5)

Now, we state applications of our theorems.

Theorem 4.1. Assume that the solution set of convexly constrained linear inverse problem (4.1) with
K := H, a real Hilbert space, is nonempty and that ∇ϕ is monotone. Then for β ∈ (0, 1) and each
t ∈ (0, 1), there exists a sequence {yt} ⊂ H satisfying the following condition:

yt = β(1 − t)yt +
(

1 − β)(yt − γA∗(Ayt − b
))

, (4.6)

where A∗ is adjoint of A, and the net {yt} converges strongly, as t → 0+, to the minimum-norm
solution of the split feasibility problem (4.1).

Proof. We note that ϕ(x) is continuously differentiable function with gradient:

∇ϕ(x) = A∗(Ax − b), (4.7)
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where A∗ is adjoint of A, which is Lipschitz (see Lemma 8.1 of [5]) and monotone (by
hypothesis). Thus, the conclusion follows from Theorem 3.2.

Theorem 4.2. Assume that the solution set of split feasibility problem (4.1) is nonempty and that
∇ϕ with K := H, a real Hilbert space, is monotone. Let a sequence {xn} be generated from arbitrary
x1 ∈ E by

xn+1 = xn − λnγA∗(Axn − b) + λnθntnxn, (4.8)

for all positive integers n, where γ > 0 and A∗ is adjoint of A. Then, {xn} converges strongly to the
minimum-norm solution of the split feasibility problem (4.1).

Remark 4.3. Theorem 3.1 improves Theorem YLY1 and Theorem 3.1 of Cai et al. [16] to a more
general class of pseudocontractive mappings. Moreover, Theorem 3.6 improves Theorem
YLY1 and Theorem 3.2 of Cai et al. [16] in the sense that our scheme provides a minimum-
norm fixed point of pseudocontractive mapping T .
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