Abstract
We study the optimal control problem of a controlled time-symmetric forward-backward doubly stochastic differential equation with initial-terminal state constraints. Applying the terminal perturbation method and Ekeland’s variation principle, a necessary condition of the stochastic optimal control, that is, stochastic maximum principle, is derived. Applications to backward doubly stochastic linear-quadratic control models are investigated.
Citation
Shaolin Ji. Qingmeng Wei. Xiumin Zhang. "A Maximum Principle for Controlled Time-Symmetric Forward-Backward Doubly Stochastic Differential Equation with Initial-Terminal Sate Constraints." Abstr. Appl. Anal. 2012 (SI16) 1 - 29, 2012. https://doi.org/10.1155/2012/537376
Information