Open Access
2012 Nonlinear Stability and D-Convergence of Additive Runge-Kutta Methods for Multidelay-Integro-Differential Equations
Haiyan Yuan, Jingjun Zhao, Yang Xu
Abstr. Appl. Anal. 2012(SI12): 1-22 (2012). DOI: 10.1155/2012/854517

Abstract

This paper is devoted to the stability and convergence analysis of the Additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of multidelay-integro-differential equations (MDIDEs). GDN-stability and D-convergence are introduced and proved. It is shown that strongly algebraically stability gives D-convergence, DA- DAS- and ASI-stability give GDN-stability. A numerical example is given to illustrate the theoretical results.

Citation

Download Citation

Haiyan Yuan. Jingjun Zhao. Yang Xu. "Nonlinear Stability and D-Convergence of Additive Runge-Kutta Methods for Multidelay-Integro-Differential Equations." Abstr. Appl. Anal. 2012 (SI12) 1 - 22, 2012. https://doi.org/10.1155/2012/854517

Information

Published: 2012
First available in Project Euclid: 1 April 2013

zbMATH: 1246.65254
MathSciNet: MR2926907
Digital Object Identifier: 10.1155/2012/854517

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI12 • 2012
Back to Top