Open Access
2012 Existence of Solutions for Nonhomogeneous A-Harmonic Equations with Variable Growth
Yongqiang Fu, Lifeng Guo
Abstr. Appl. Anal. 2012(SI11): 1-26 (2012). DOI: 10.1155/2012/421571

Abstract

We study the following nonhomogeneous A-harmonic equations: d*A(x,du(x))+B(x,u(x))=0, xΩ, u(x)=0, xΩ, where Ωn is a bounded and convex Lipschitz domain, A(x,du(x)) and B(x,u(x)) satisfy some p(x)-growth conditions, respectively. We obtain the existence of weak solutions for the above equations in subspace 𝔎01,p(x)(Ω,Λl-1) of W01,p(x)(Ω,Λl-1).

Citation

Download Citation

Yongqiang Fu. Lifeng Guo. "Existence of Solutions for Nonhomogeneous A-Harmonic Equations with Variable Growth." Abstr. Appl. Anal. 2012 (SI11) 1 - 26, 2012. https://doi.org/10.1155/2012/421571

Information

Published: 2012
First available in Project Euclid: 4 April 2013

zbMATH: 1252.35142
MathSciNet: MR2955023
Digital Object Identifier: 10.1155/2012/421571

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI11 • 2012
Back to Top