Open Access
2012 Singular Initial Value Problem for a System of Integro-Differential Equations
Zdeněk Šmarda, Yasir Khan
Abstr. Appl. Anal. 2012(SI07): 1-18 (2012). DOI: 10.1155/2012/918281

Abstract

Analytical properties like existence, uniqueness, and asymptotic behavior of solutions are studied for the following singular initial value problem: g i ( t ) y i ( t ) = a i y i ( t ) ( 1 + f i ( t , y ( t ) , 0 + t K i ( t , s , y ( t ) , y ( s ) ) d s ) ) , y i ( 0 + ) = 0 , t ( 0 ,  t 0 ] , where y = ( y 1 ,  ,  y n ) , a i > 0 , i = 1 ,  ,  n are constants and t 0 > 0 . An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used. Particular attention is paid to construction of asymptotic expansions of solutions for certain classes of systems of integrodifferential equations in a right-hand neighbourhood of a singular point.

Citation

Download Citation

Zdeněk Šmarda. Yasir Khan. "Singular Initial Value Problem for a System of Integro-Differential Equations." Abstr. Appl. Anal. 2012 (SI07) 1 - 18, 2012. https://doi.org/10.1155/2012/918281

Information

Published: 2012
First available in Project Euclid: 5 April 2013

zbMATH: 1258.45005
MathSciNet: MR3004875
Digital Object Identifier: 10.1155/2012/918281

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI07 • 2012
Back to Top