Open Access
2012 Eigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations
Jing Wu, Xinguang Zhang
Abstr. Appl. Anal. 2012(SI06): 1-14 (2012). DOI: 10.1155/2012/740760

Abstract

We study the eigenvalue interval for the existence of positive solutions to a semipositone higher order fractional differential equation - 𝒟 t μ x ( t ) = λ f ( t , x ( t ) , 𝒟 t μ 1 x ( t ) , 𝒟 t μ 2 x ( t ) , , 𝒟 t μ n - 1 x ( t ) ) 𝒟 t μ i x ( 0 ) = 0 , 1 i n - 1 , 𝒟 t μ n - 1 + 1 x ( 0 ) = 0 , 𝒟 t μ n - 1 x ( 1 ) = j = 1 m - 2 a j 𝒟 t μ n - 1 x ( ξ j ) , where n - 1 < μ n , n 3 , 0 < μ 1 < μ 2 < < μ n - 2 < μ n - 1 , n - 3 < μ n - 1 < μ - 2 , a j , 0 < ξ 1 < ξ 2 < < ξ m - 2 < 1 satisfying 0 < j = 1 m - 2 a j ξ j μ - μ n - 1 - 1 < 1 , 𝒟 t μ is the standard Riemann-Liouville derivative, f C ( ( 0,1 ) × n , ( - , + ) ) , and f is allowed to be changing-sign. By using reducing order method, the eigenvalue interval of existence for positive solutions is obtained.

Citation

Download Citation

Jing Wu. Xinguang Zhang. "Eigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations." Abstr. Appl. Anal. 2012 (SI06) 1 - 14, 2012. https://doi.org/10.1155/2012/740760

Information

Published: 2012
First available in Project Euclid: 5 April 2013

zbMATH: 1260.34015
MathSciNet: MR3004914
Digital Object Identifier: 10.1155/2012/740760

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI06 • 2012
Back to Top