Open Access
2010 Solution Properties of Linear Descriptor (Singular) Matrix Differential Systems of Higher Order with (Non-) Consistent Initial Conditions
Athanasios A. Pantelous, Athanasios D. Karageorgos, Grigoris I. Kalogeropoulos, Kostas G. Arvanitis
Abstr. Appl. Anal. 2010: 1-24 (2010). DOI: 10.1155/2010/897301

Abstract

In some interesting applications in control and system theory, linear descriptor (singular) matrix differential equations of higher order with time-invariant coefficients and (non-) consistent initial conditions have been used. In this paper, we provide a study for the solution properties of a more general class of the Apostol-Kolodner-type equations with consistent and nonconsistent initial conditions.

Citation

Download Citation

Athanasios A. Pantelous. Athanasios D. Karageorgos. Grigoris I. Kalogeropoulos. Kostas G. Arvanitis. "Solution Properties of Linear Descriptor (Singular) Matrix Differential Systems of Higher Order with (Non-) Consistent Initial Conditions." Abstr. Appl. Anal. 2010 1 - 24, 2010. https://doi.org/10.1155/2010/897301

Information

Published: 2010
First available in Project Euclid: 1 November 2010

zbMATH: 1185.93059
MathSciNet: MR2607128
Digital Object Identifier: 10.1155/2010/897301

Rights: Copyright © 2010 Hindawi

Vol.2010 • 2010
Back to Top