Open Access
10 August 2004 A finite-dimensional reduction method for slightly supercritical elliptic problems
Riccardo Molle, Donato Passaseo
Abstr. Appl. Anal. 2004(8): 683-689 (10 August 2004). DOI: 10.1155/S1085337504310031


We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.


Download Citation

Riccardo Molle. Donato Passaseo. "A finite-dimensional reduction method for slightly supercritical elliptic problems." Abstr. Appl. Anal. 2004 (8) 683 - 689, 10 August 2004.


Published: 10 August 2004
First available in Project Euclid: 20 September 2004

zbMATH: 1133.35360
MathSciNet: MR2096946
Digital Object Identifier: 10.1155/S1085337504310031

Primary: 35J25 , 35J60

Rights: Copyright © 2004 Hindawi

Vol.2004 • No. 8 • 10 August 2004
Back to Top