Open Access
1997 $N$-Laplacian equations in $\mathbb{R}^N$ with critical growth
João Marcos B. do Ó
Abstr. Appl. Anal. 2(3-4): 301-315 (1997). DOI: 10.1155/S1085337597000419


We study the existence of nontrivial solutions to the following problem: {uW1,N(N),u0anddiv(|u|N2u)+a(x)|u|N2u=f(x,u)inN(N2), where a is a continuous function which is coercive, i.e., a(x)as|x| and the nonlinearity f behaves like exp(α|u|N/(N1)) when |u|.


Download Citation

João Marcos B. do Ó. "$N$-Laplacian equations in $\mathbb{R}^N$ with critical growth." Abstr. Appl. Anal. 2 (3-4) 301 - 315, 1997.


Published: 1997
First available in Project Euclid: 14 April 2003

zbMATH: 0932.35076
MathSciNet: MR1704875
Digital Object Identifier: 10.1155/S1085337597000419

Primary: 35A15 , 35J60

Keywords: $p$-Laplacian , Critical growth , elliptic equations , Mountain pass theorem , Trudinger-Moser inequality

Rights: Copyright © 1997 Hindawi

Vol.2 • No. 3-4 • 1997
Back to Top