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1. Introduction

In 1935, S. Ulam posed a problem which is listed as Problem 110 in the
Scottish Book (see [13] or [15]): “Let M be a given manifold. Does there exist a
numerical constant K such that every continuous mapping f of the manifold M
into part of itself which satisfies the condition |f™(z) — z| < K for n = 1,2, ...,
(where f"(z) denotes the n-th iteration of the image) possesses a fixed point:
f(zo) = zo? The same under more general assumptions about M (general
continuum?).”

Let X be a metric space and let ¢ be a positive number. A homeomorphism
he : X — X will be called an Ulam e-homeomorphism if he is fixed point free
and, for every z € X, the orbit {hZ(z)}52; is bounded by £. We will say that
X has the property of Ulam if X admits an Ulam e-homeomorphism for every
e>0.

A continuum is a nonempty compact connected metric space. A homeomor-
phism h : X — X is periodic if there exists an integer k > 1 such that for every
z € X, h*¥(z) = z, and the smallest integer k with this property is called the
period of h. A homeomorphism h : X — X is an involution if h is periodic with
period k = 2.
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The most natural example of a continuum with the property of Ulam is
the Cartesian product of infinitely many circles. Among the finite dimensional
continua, the k-adic solenoid satisfies the property of Ulam: for every ¢ > 0, the
k-adic solenoid admits an Ulam e-homeomorphism of period k.

A continuum is decomposable if it is a union of two proper subcontinua. If £ >
1, then the k-adic solenoid is not decomposable. A continuum is nondegenerate
if it contains more than one point. A continuum is hereditarily decomposable if
every nondegenerate subcontinuum is decomposable. Among examples described
in this paper, there is a one-dimensional hereditarily decomposable continuum
having the property of Ulam with h. being an involution for every ¢ > 0.

A dynamical system ® on a metric space X is a continuous mapping @ :
X xR — X (where R is the set of real numbers) such that for each ¢t € R,
®(X x {t}) = X, and if t; and ¢; belong to R and p € X, then &(®(p,t1),t2) =
®(p,t; + t2), and ®(p,0) = p. If X is a differentiable manifold and if V is a
vector field on X such that lim;_o(®(p,t) — p)/t = V(p) for every point p € X,
then we say that the dynamical system ® is generated by V. For every p € X,
the set {®(p,t) : t € R} is called the trajectory of p. If the trajectory of p consists
of the single point p, then p is a rest point of the dynamical system. Other basic
notions of the theory of dynamical systems can be found in [1].

An Ulam e-homeomorphism can arise from a rest point free dynamical sys-
tem whose trajectories are uniformly bounded by e. We will show that such a
dynamical system can be constructed on an absolute neighborhood retract using
Borsuk’s example [4]; the space is the Cartesian product of the circle and the
Hilbert cube. We also survey examples of rest point free dynamical systems on
the Euclidean space R? with uniformly bounded trajectories (see [11] and [12])
which settle Ulam’s question for finite-dimensional manifolds.

The collection of examples of spaces that have the property of Ulam, pre-
sented in the following sections, includes two that are described here for the first
time.

2. A one-dimensional, hereditarily decomposable continuum
with fixed point free e-involutions

Let S denote the unit circle in the complex plane C, i.e., the set {z € C:
|z2| = 1}. In the product space T = [[;2; S; of a sequence of circles S; =
S1 consider the subset X consisting of those points (z;) whose at most one
coordinate 2; is not equal to 1 or —1:

o0
X=U{(z,-)GT:z,-:lorzj=—1forj76k}.
k=1
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X1 X2 X3
FIGURE 1

Obviously, X is a closed subset of T. Let T, be the product space ]'[;.’=1 S;
and regard T;, as a subset of T consisting of points (z;) such that zj =1 for
Jj>n. Let X, =T, NX. Figure 1 shows X,, for n=1,2, and 3.

Let p; : Xj+1 — X; be the map obtained by deleting the (j+1)-st coordinate.
The sequence of spaces {X;} with the bonding maps p; form an inverse system,
whose inverse limit is the same space X as we defined above. Since every X, jis
a one-dimensional continuum, so is X. The hereditary decomposability of X is
evident. Finally, for an arbitrary € > 0, a fixed point free e-involution on X can
be obtained by changing the sign of the k-th coordinate of each point in X for
a sufficiently large k and retaining the other coordinates without change.

REMARK 1. This continuum can be modified to produce a one-dimensional,
locally connected (hence decomposable) continuum with the property of Ulam.
The modification is accomplished by increasing the number of circular “bridges”
connecting the two copies of X; in X1, so that the gaps between them tend
to zero as j — oo. However, one cannot improve much more upon the local
properties of this example. An addendum to Problem 110 in the Scottish Book
indicates that the problem has an affirmative answer in the case of a locally
contractible continuum of dimension smaller than or equal to two.

3. The Cartesian product of the circle and the Hilbert cube

In 1935 K. Borsuk [4] constructed an example of a cell-like, locally connected
continuum in R® which admits a fixed point free homeomorphism (a continuum
is cell-like means it is the intersection of a nested sequence of cells). The Borsuk
continuum is a solid cylinder with two tunnels carved out (see Figure 2). One
tunnel starts at the top of the cylinder and spirals downwards to approach the
circle bounding the bottom, and the other tunnel starts at the bottom and spirals
upwards to approach the circle bounding the top. The width of each tunnel
approaches zero as the tunnel gets close to the limiting circle. The spiraling
tunnels are oriented so that for an observer looking from above a point falling
down inside either of the two tunnels would rotate clockwise. Additionally, the
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entrance to each tunnel is a circular disk, concentric with the corresponding end
of the cylinder, and the tunnel’s descent (resp. ascent) is monotonic, so that
each horizontal cross-section of the continuum is a circular disk with precisely

two circular holes.

FIGURE 2

A fixed point free homeomorphism h on this continuum can be described
as follows: We rotate clockwise and lower every horizontal cross-section except
the top and bottom, which are rotated only. A horizontal cross-section lying
strictly between the top and the bottom is transferred by h onto another, lower
cross-section by a homeomorphism matching the rotation on the outer circle
and accommodating the difference in sizes and positions of the two holes on the
corresponding levels. No point remains fixed under this homeomorphism since
the top and the bottom annuli rotate about the axis of the cylinder, and each
point lying between the two extreme levels is moved to a level below its original
position. The homeomorphism h can be modified slightly, without introducing
any fixed points, so that it is a rotation not only on the top and bottom, but on
the lateral surface of the cylinder as well. (For a reduction of Borsuk’s example
to a two-dimensional one see R. H. Bing [2] and [3].)

This ingenious example can be used as a building block to obtain a fixed
point free, orientation preserving homeomorphism on R3 with bounded orbits.
Such a homeomorphism is described by B. L. Brechner and R. D. Mauldin in [6].
A construction similar to that of [6] can also be used to produce rest point free
dynamical systems on R? with bounded trajectories. The “rotation” on Borsuk’s
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continuum (by an arbitrary angle) can be extended to an embedding of the solid
cylinder into R? by pushing the inside of the first tunnel down into itself and
pulling the inside of the first tunnel down. So extended “rotation” can be applied
to a stack of cylinders (see Figure 3) such that the top of each of them is the
bottom of another; the pulled-out part of one cylinder matching the pushed-in
part of another. The trajectory of any point inside the stack is confined to two
consecutive cylinders, and the points on the boundary of the stack rotate about
its axis. This dynamical system on the stack extends to the remaining part of
R3 as a rotation about the stack’s axis, resulting in a rest point free dynamical
system whose each trajectory is bounded.

The same idea can also be applied to a solid torus T (see Figure 4). By
dividing T into k slices and applying the “extended rotation” to each of them,
we get a fixed point free homeomorphism Ay of the torus onto itself with every
orbit contained in the union of two neighboring slices. A map similar to h; can
be derived from the dynamical system described by F. B. Fuller [8].

Let T be the Cartesian product of the circle §* and a disk D. If k is suffi-
ciently large, we can choose the supremum of the diameters of the trajectories of
hi to be close to the diameter of D. Let X be the Cartesian product of S and
the Hilbert cube Q = []:2, D;, where D; is a disk of diameter 1 /i. Let hg, be
the homeomorphism of X onto itself obtained by applying h;, to S x D,, and the
identity on the other factors of X. Observe that for every e > 0, if n is greater
than 2/ and k is sufficiently large, then hg, is an Ulam e-homeomorphism.

The homeomorphism Ay, can easily be embedded in a rest point free dynam-
ical system on S! x Q.

FIGURE 3 FIGURE 4
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4. Rest point free dynamical systems with uniformly
trajectories on three-dimensional manifolds

We take the unit cube to be the set
B={(z,9,2) eR*:0<2<1,0<y<1,0<2<1}.

Suppose that ® is a dynamical system generated by a vector field V' defined on
R3 and the following conditions are satisfied:

(4) There is a neighborhood N of the boundary of B such that if p € N or
p € B, then V(p) = (0,0,1).
() If a trajectory of ® passes through the points (a,b,0) and (c,d, 1), then
(a,b) = (c,d).
(7i2) @ has no rest points.

(iv) There is a trajectory which intersects the boundary of B at exactly one
point (a, b, 0).

DEFINITION. The restriction to B of a vector field satisfying conditions (z) —
(iv) above is called a plug.

Here are several types of plugs described in the literature:
1. A C* plug constructed by F. W. Wilson [16]. The corresponding dy-

namical system ® contains two circular trajectories.

2. A C! plug constructed by P. A. Schweitzer [14] for the purpose of solv-
ing the Seifert Conjecture (see Figure 5). The corresponding dynamical
system ® contains no circular trajectories.

3. A C®* modification of Schweitzer’s plug due to J. Harrison [9)].

FIGURE § FIGURE 6
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Both Wilson’s and Schweitzer’s plugs can be modified, without changing
the differentiability properties, so that condition (iv) can be replaced by the
following, stronger condition:

(iv") There is an openset U C {(z,y) €R?: 0<z <1, 0<y< 1}, such
that every trajectory passing through a point (a,b,0) with (a, b) e U
intersects the boundary of B in exactly one point.

Such a modification of Wilson’s plug (see Figure 6) is used in [11] to solve
Ulam’s Problem 110 for manifolds, in that case for R3. (This modified plug
contains two annuli of circular trajectories.) A similar example described in [12]
is based on Schweitzer’s plug, modified to satisfy condition (iv'). In both exam-
ples, for a given £ > 0, a dynamical system ¥ on R? with trajectories uniformly
bounded by ¢ is constructed. The homeomorphism h : R® — R3 defined by
h(p) = ¥(p, 1) has no fixed points, and its orbits are uniformly bounded by e.

The above examples of dynamical systems on R? are special cases of a more
general construction:

Assume that V' and @ satisfy conditions (i), (i), (¢if), and (50’ ). If ® has
circular trajectories, assume in addition that ®(p,1) has no fixed points.

Let U be the open set described in condition (iv’). Let § be a positive number.
Choose a family of open sets {U;}];, such that each Uj is a translation of U by
the vector (a;,b;) and

n
{myeR:0<z<1,0<y<1}c U
i=1
For a point p = (z,y,2) € R, let k and i be integers such that 1 < i < n and
kn+(i—1)<z/6 <kn+i.
Define a vector field W on R? by

W(p) =V((z/6 —ai — [/ — as], y/6 — b; — [u/6 — b, 2/6 — [2/6])),

where [c] denotes the greatest integer less than or equal to c. Let ¥ be the
dynamical system on R? generated by W.

Condition (iv') implies that if (z,y) € U and p = (z,,0) [p = (z, y, 1)], then
there is a to € R such that ®(p,t) € B for t > tg [t < to]. Hence for every p € R3,
the length of the projection of the trajectory of p onto the z-axis is less than
(n+1)8, and the projection of the trajectory of p onto the zy-plane is contained
in a square with the side equal to 36. Therefore each trajectory is bounded by
(n + 1)262 + 962 + 962" °=§(n + 1)? + 18"/2,

To obtain a rest point free dynamical system ¥ on R* whose trajectories are
uniformly bounded by ¢, take § = e(n +1)2 + 182, To show that R has the
property of Ulam, i.e., to obtain a fixed point free homeomorphism 4 : R? — R3
whose orbits are uniformly bounded by ¢, take h(p) = T(p, 1).
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Note that if V is C*, A < co, then W is C*, and if ® has no circular
trajectories, then ¥ has no circular trajectories.

QUESTION. Does there exist a C*° [C*, \ > 2] dynamical system on R® with
uniformly bounded trajectories and no compact trajectories? In particular, can
the ideas of Harrison [9] be used to construct such an ezample?

REMARK 2. All closed 3-manifolds also have the property of Ulam. Every
closed 3-manifold admits a rest point free dynamical system (see [16]), and the
trajectories of any such dynamical system can be cut into small pieces by a
large number of strategically placed small plugs, locally following the pattern
described in the above construction.

FIGURE 7

REMARK 3. As mentioned in §3., examples of C™ rest point free dynamical
systems on R?® with bounded (but not uniformly bounded) trajectories can be
derived from the results of Brechner and Mauldin, and of Fuller. An explicit
example of such a dynamical system is described by G. S. Jones and J. A. Yorke
in [10].

Jones and Yorke show that a differential equation may have all solutions
bounded in R® and have no critical points. They construct a dynamical system
using an increasing sequence of solid tori 71,73, Ts, ..., filling up R3 (see Figure
7). The boundaries of the tori rotate about the axes of revolution of the solid
tori. Associated with each Ty, there is a positive number u,, and a circle K,
with radius r,, and center p, such that T, is the closure of the u,-neighborhood
of K,. The construction is carried out so that p, is a point of Kp41. If n is an
even integer, then K, lies in the zy-plane, and if n is odd, then K, lies in the
yz-plane. If p is a point of T, 41 — T and d is the distance from p to Kn 41, then
each point of the trajectory passing through p is at a distance d from Kp 1. Ifq
is a point of Tp4+1 — Ty, and the distance between the trajectory passing through
g and T, is zero, then the o and w limit sets of g are circles on the surface of T,.
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REMARK 4. A theorem of L. E. J. Brouwer [7] implies that there are no rest

point free dynamical systems with bounded trajectories on R?. However, there
is a fixed point free orientation reversing homeomorphism of R2 onto itself with
all orbits of points bounded, see [5].
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