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1. Introduction

In this paper we consider the following initial boundary value problem for a
system of quasilinear parabolic equations

(1.1) O (u) — V- a¥(z,t,u, Vu) = f7(z,t,u, Vu)
inQr:=0x(0,T), j=1,...,n.

(1.2) d(z,t,u, Vu) - v(z) = ¢’ (z,t,u) on S7:=00x (0,7), j=1,...,n.

(1.3) u(z,0) = ug(z) on ,

where @ € RY, N > 1 is a bounded domain with smooth boundary 8 = Q,
v(z) = (v1,... ,un) denotes the outer unit normal to 8, u = (u!,... ,u™), n > 1,
Vu = (Vul,...,Vu"), V =grad,.

This paper is motivated by results of Filo and Kacur [8]. The paper [8] concerns
the existence of a variational solution to problem (1.1) — (1.3) with f/, j =1,... ,n,
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independent of Vu. In contrast to [8] we consider here the case when f7 are depend-
ing not only on z, ¢t and u but on Vu, as well. We assume here some structure and
monotonicity conditions (see assumptions (H1)-(H6) in the next section) among
which the conditions concerning functions & ((H1) and (H2)), function g ((H3))
and the structure condition ((H4)) imposed on a’ are the same as the corresponding
conditions from [8]. The other assumptions of [8], i.e..:

1° the monotonicity condition

n
3 (@ (@t 2, @1) — 0 (2, ,2,0)) (@1 — g2) 2 0
=1
Y(z,t) € Qr, Vz € R™ and Vg; = (q},-.. ,q7), i = 1,2, qf € R™ and the
coerciveness condition

n
Za‘j(m)t: 2, q) : q] Z cl|q|.’l+1 — C2;
j=1

2° the structure condition
|f(z,t,2)| <c(l+[2F),  (p>0),

are replaced in our paper by

1* the strict monotonicity condition

n
E(aj (xs t, z, QI) - (.’L', t, z, q2))(q{ - q%) 2 lel - q2|r+1;
Jj=1

2* the structure condition
|f(z,t,2,9)] S c(1+ 2P +1q°),  (s>0).

The paper is divided into four sections. Section 2 contains notation used in pa-
per, and Section 3 is devoted to the existence of a variational solution to problem
(1.1)-(1.3). Section 3 consists of four parts. Part 3.1 contains assumptions (H1)-
(H6) which have been presented above. In Part 3.2 the definition of a variational
solution of (1.1)-(1.3) and the existence theorems are formulated. We admit the
same assumptions on p and a (a is connected with the growth of g (see (HS6)))
as in [8], both in Theorem 1 which is referred to the local existence of solution of
(1.1)~(1.3) and in Theorem 2 concerning the global existence of a solution. The
restrictions imposed on p and « follow from the interpolation inequalities proved
in [8]. Moreover, we assume an additional condition associated with the growth
of f,ie. s < max{(',:i)lm, (¥ 1‘{}:’_‘;2;"“} (assumption (iii) of Theorem 1 and
Theorem 2).
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In Part 3.3 we introduce an auxiliary problem (see problem (3.1)—(3.3)) which
is used to prove Theorems 1 and 2. We prove the existence of a variational solution
of (3.1)—(3.3) applying the methods from the papers of Alt and Luckhaus [2] and
Kagur [10].

Part 3.4 contains the proofs of Theorems 1 and 2. In the proofs the methods of
[2], [8] and [10] are used.

Finally, Section 4 concerns the existence of a variational solution to problem
(1.1)~(1.3) in the case when b = id . We formulate there Theorems 3 and 4 analogous
to Theorems 1 and 2 of Section 3.

Quasilinear parabolic systems in the case b = id under general nonlinear bound-
ary conditions were considered in papers [1], (3], [4], [5] and [9]. In [1] P. Ac-
quistapace and B. Terreni prove some results on local in time existence of con-
tinuously differentiable solutions of such problems by using W2P-estimates (where
p > N). The existence of the classical local solution is also proved by H. Amann
in [3] and by M. Giaquinta and G. Modica in [9]. H. Amann uses in his paper [3]
semigroup methods, while in [9] methodes based on Schauder type estimates are
used. Paper [4] contains the results concerning both classical and weak solutions
of semilinear parabolic systems under nonlinear boundary conditions. At last, in
[5] some recent results on theory of linear and quasilinear elliptic and parabolic
systems with nonhomogenous boundary conditions are described.

2. Notation

We use the same notation as in [4]. In the sequel we denote by b, a7, j =
1,...,n, a, f, g the vectors (b,...,b"), (ai,... ,a}), (a',...,a"), (f,..., f"),
(g%, ...,9™), respectively. Let X be whichever of the function spaces mentioned in
this paper. We say that a function v = (v!,...,v") belongs to X if V1 < i < n,

u? € X. Next, we use the following notation: b(z)z = E b (2)z; for z € R™

a(u, Vu) = a(z,t,u,Vu), f(u,Vu) = f(z,t,u, Vu), g(u Vu) = g(z,t,u, Vu);
(-,-) — the duality between V := W, ,(R2) and V*; [ [v|**! := [ |u(z)|>t! dS;
o) 79}

Jv(®)e(t) = [v(z,t)o(z,t) dz, ete.
Q )

In this paper we also use the following interpolation inequality

741
(2.1) [t <ol + oo ([ o)

for any v € L™+1(Q) with Vv € L™*1(2) and for any 0 < < 0o, where

r(N+m+1)+m+1 _ (r+1)(p—m)
N T N Am+ D) +m+1-Np

0<m<p<
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and
Np—-m)
r{N+m+1)+m+1—Np
Inequality (2.1) follows from the Gagliardo-Nirenberg inequality (see [7] and also

[8], Prop. 1).

o=

3. Existence of a solution of problem (1.1)—(1.3)

3.1. Assumptions
Now we introduce assumptions concerning the structure of problem (1.1)—(1.3).
We assume the following properties:

(H1) There is a strictly convex C*-function & : R® — R, $(0) =0, V&®(0) =0
such that
b(z) = VO(2);

(H2) B(2):=b(z) -z —®(z) = gl'(b(z) — b(sz)) - zds satisfies

B(2) > c1|z|™ — ¢z (m > 0),

where ¢1,co > 0 are constants.
(H3) o/ : Qr x R* x R"» — RN j = 1,... ,n are continuous (or satisfy

Carathéodory conditions) and
n
Z(a’] (Eata z, QI) - a'j(w7 t7 Z, Q2))((I{ - q%) 2 C|Ql - Q2|r+1
=1

Y(x,t) € Qr, ¥z € R® and Vg; = (q},... ,q7), i = 1,2, where q{ e RY for
ji=1...,n,7v>0;

n .
(H4) ng lo?(z,t,2,9)| < c(1+|2|° + |qI"), where § = max {r, &}, p > 0;
(H5) f:Q@r x R® x R¥™ — R" is continuous (or satisfies Carathéodory condi-

tion) and
|f(@.t,2,9)| <A+ 2" +1g]°),  (s>0);
(H6) g: Sr x R® — R" is continuous (or satisfies Carathéodory condition) and

lg(z,t, 2)| < (|2|* + 1), a>0.

In (H3)-(H6) ¢ > 0 is a constant.
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3.2. Definition of a variational solution of (1.1)—(1.3) and formulating
of main theorems

At first, following [8] (see also [2] and [10]) we introduce the definition of a
variational solution of problem (1.1)-(1.3).

DEFINITION 1. A wvector function u € L™(0,T;V) N L>(0,T; L™*(Q)) is a
variational solution of (1.1)~(1.3) on Qr if and only if b(v) € L*(Qr), d:b(u) €
LOD/T(0,T;V*) and

(0) Jo (@eB(w)v) = = [fq, (b(w) — b(Uo))dew
Vo € LTH1(0, T; V) N L®(Qr) with By € L®(Qr), v(T) = 0;

(i) [y (@eb(u),v) + [fy, a(u, Vu)Vu — [fg g(wyv = [, f(u, Vu)v,
Yo € L™1(0,T; V) N L0, T, L™+1(Q)) (V = WL, ().

Now we shall formulate the main theorems which are analogous to Theorems 1
and 2 of [8].

THEOREM 1 (Local Existence). Let (H1)—(H6) be satisfied. Moreover, let ug €
WL 1(Q) and uob(ug) € L*(R). Then there exists T* € (0,T] such that problem
(1.1)—(1.3) has a variational solution v on Q7+ provided the following conditions
are satisfied :

(i) 0 < p < p* := max {m, :-(N+m-;,1)+m+1};
(ii) O<a< r§N+miana,m[+1);

r+1)m r(N+m+1)+m+1 } .
m+1 ) N+4+m+1 4

(iii) 0 < s < 8* :=ma.x{(

THEOREM 2 (Global Existence). Let (H1)—(H6) be satisfied. Moreover, let
ug € W 1(9) and uob(ug) € L (). Then problem (1.1)—(1.3) has a variational
solution on QT for any T > 0 provided the following conditions are satisfied:

() p<m (p<m ifp* =m);
(i) either 0 < o <min{m,r} or0<r<a< % and

+1 ,
(";H)r in the case N =1,
r(m(r+1)+mi1) _
o< T(gggﬁlmtl for N=r+1,

N(r+m)—rm+1—(N(;(;an)lnlz)r—1)2+4r(r+1)(m+1) otherwise,

r+1)m (r+1)m . _ {r+1)m
(ii)) s < A" (3<m—+1 Zfs"—m—ﬂ)-
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3.3. An auxiliary problem

In order to prove the above theorems consider first the problem

(3.1) Btbi(us) -V- ag(m,t, e, V) = f(z,t,ue, Vi) in Qy,
(3.2) al(z,t, ue, Vue)v(z) = gi(z,t,uc) on Sr,

(3.3) ue(x,0) = ug(z) in Q

where

ag(:c, 1, Ue, V'LLE) = aj(z.’ t, Cs(us)uea VUE),
fe(x, t, Ue, Vus) = f((l:,t, Cs(uz-:)uea CE(V'U,E)VUE),
(3.4) ge(Z, t, ue) i= g, t, (o (ue)ue),

C(2) = min{l, ﬁ}

The following lemma is true.

LEMMA 1. Let (H1)-(H6) and assumption (iii) be satisfied. Then there exists a
variational solution u. of (3.1) — (3.3) in Qr for any 0 <e < 1.

PROOF. Similarly to [2] and [10] we prove the lemma under the assumption
that a7, f and g are independent of t. First, we replace d;b(u) by the backward
difference quotient 8; "b(u) = #[b(u(t)) — b(u(t — h))]. Thus, instead of parabolic
problem (3.1)—(3.3) we obtain an elliptic problem which we solve applying the
Galerkin method. To do this we choose functions e; € W, () N L™+1(Q) such
that V), ey,... , e, are linearly independent and linear combinations of e; are dense
in Wl ,(Q)NL™+(Q). Asin [2] (see also [10]) we are looking for an approximate
solution of (3.1) - (3.3) in the form

Y
uaA(,t) = D anri(t)ei(@)
=1
with apx; € L=((0,T)), where upa(z,t) satisfies the equality
Saaumn,0) 1= [ 57 bum (@)
(3.5) +/ ae(unx, Vupa) Vo — / 9e(una)v
Q a0
—/ fe(unx, Vupr)v =0
Q
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for almost all t € (0,T) and for all v € V; :=span{ey,...,ex}. In (3.5) the initial
data are given by

(3.6) upa(t) == ud(t) for —h<t<0,

3.7) W0 (t) = min{l, ﬁ}uo

For simplicity we assume that T'/h is integer. From (3.5) we conclude that up(¢)
can be determined inductively for ¢ € ((k — 1)h, kh) and axx(t) are constants on
((k — 1)h, kh).

Now we prove the existence of upx(t). To do this assume that upy(2) is known
in (0,(k — 1)h). We must prove the existence of upx(t) in (0,kh), so we must

A
determine o = (@;)i=1,. . for t € (0,kh). Denote ¢ = > oye; and consider a
i=1

continuous mapping Ji : R* — R* such that Jua(e) = (Spa(d,e:),i =1,...,A).
Using (3.5) we obtain

A
Jaa(@)a = Z Sha(¢, €i)os = Spa(d, 9)
(3.8) i=1

- /ﬂ O b(4)6 + L 0e($, V)V - /a gl /ﬂ 16,V 9)s.

Applying in (3.8) assumption (H3) we get

1 41
69 Im@a> g [ ©060) -uee—m)o+e [ Vot

- [ lact6.001v91 - | lae(@liel - [ 156,904l
Using (H4), (3.3), (3.4) and the Young inequality we have
1 ? r+1

310 [lats,0nvase(1+(3) ) [1vo1<n [ e+ o

Next, using (H6) and the Young inequality yields

[aonese(r+(2) ) [ 1

(3.11)
< '0/ |§|*T? + C(e,m), 0< o < min{r,m}.
a0
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Applying now Remark 2 (p. 22) from [8] we get

(3.12) /3 1o < /n Ve[*7 + C(n) /ﬂ g+

<m [ 1961 +Cm) [ 67 + Clm).
Thus, by (3.11) and (3.12) we have

(3.13) /a lae(@)l4] < /n VoI + Cm) /n 617 + C(e, ma).

Now, using (H5) and the Young inequality we obtain

G [ |f5(¢,V¢)II¢|SC(1+(§)p+(é>a) [161<n [ +ctem.

Next, using the property (see [2]):
(3.15) B(z) — B(z) < (b(z0) — b(2))20

and (H2) we have

616 g [ 0060 b - )

> % [lom -2 =5 [ Bloe-w).

Taking into account (3.9), (3.10), (3.13), (3.14) and (3.16) and since [, B(¢(t —h))
is known, 7, 72 and h are sufficiently small we have

310 In(@a2C [ 1961+ (S=Clm)-n) [ 61~ Clenm ) 20

for o with |a| = ¢ (c is some constant) such that ||[Ve|z-+1(q) is large enough.
therefore Jap € R* such that Jux(ap) = 0. Thus we have proved the existence of
up(t) satisfying (3.5).

The next step in the proof of the lemma is to prove the following inequalities:

+1 r+1
(3.18) es<sts<up / [una(8)[™ / lurallys, ) < Ce

and

T—h
(3.19) [) _/n(b(Uh)‘(t + h)) — b(upx(t)) - (unar(t + h) — upa(t)) dt < Ceh.



MIXED PROBLEMS FOR PARABOLIC SYSTEMS 133
To show (3.18) we put v = upy into (3.5). Hence we get

(3.20) ‘/Qat—hb(uh)‘(t))uh)\(t)+/(;a5(’u.h)\,vuh)\)V’uh)‘

/ 9e (Unx)up —/ Fe(unx, Vupp)upy = 0.
a0 Q

Using (H3) we have

(3.21) %/ﬂ(b(uh,\(t)) —bra(t — h))) - unrqey + C/Q [Vupy |t
sL|as(uhA,o>||VuM| + /Q 19e (un)[una|

+ /Q £ (tins Vi) |fums -

Now, applying in (3.21) inequalities (3.10), (3.13), (3.14) with ¢ = uy, (3.15) and
(H2) we obtain

(3.22) % /Q [Blunx(t)) — Bluns(t — B))] + C /ﬂ (Vs [+

<c, /Q Bunr(t)) + Cu.

Integrating (3.22) over (0,t) (where 0 <t < T') we get
1/t 1 rt=h . 1
= 1 o
- /0 fn B(un(t)) - . /Q B(una(t)) +C /0 IVunrllH g

t
<c, / / Blum(®)+Cl,  (Cly = CuT).
0 [?]

Hence

1 [t 1 [0 t .
i [ B =5 [ [ Bam©)+ 6 [ 1Vl

<c. [ t [ Bun@) + L.

Since by (3.6) and (3.7)

%_/_Oh_/(;B(“hA(t)) = /QB(u?l) <C

we have

i £
[ Bwm®) + ¢t [ 1vmiithe <0 [ [ Bum@)+ .
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Therefore applying the Gronwall inequality and (H2) we obtain

(3.29) esssup [ fu(t)™+1 + / IVunalzths ey <

o<t<T

Now using inequality (2.1) with p = r and (3.23) we get (3.18). Moreover
(3.24) / Bupa(t)) C  for0<t<T.
Q

Now (3.18) implies that we can choose a subsequence of (upy) still denoted by
(un) such that

(3.25)  upy > ue weakly in L™+1(0,T; W, () as (h,A) — (0,00).

In order to prove (3.19) integrate (3.5) over (t;,tiy1), where t; — ¢h, t;y; =
(i+1)h,i=0,...,1—1,1=%. We obtain

tit1
(3.26) [ [ ) - b~ )
tit1 ti1
+/ti /Qae(uh,\,vh,\)vv - /t; /an ge(unr)v
/thLl / Ffe(una, Vupy)v = for all v € V),

Hence changing in (3.26) variable ¢ for ¢+ h and next putting v = upx(t+h) —una(t)
we get

] f (Bunn(t + B) — bunx (D)) (una(t + h) — una(£))

ti—1

+ h'/tl / as Uk t+h) Vuh,\(t+ h)) V(uh,\(t+ h) — uh,,\(t))

ti—1

(3.27) o / e (unx(t + h)) (una(t + k) — upa(®))

ti—1

_h/ ffe(uhA(t+h) Vupa(t + h))

ti—1

- (upa(t + k) — upa(t)) = 0.
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Now, summing up equalities (3.27) fori =1,... ,! — 1 we have

T—h
]0 /ﬂ (Bunr(t + 1)) — bluna(8))) - (wna(t + k) — uny (2))

T—h
n / / ae(unn(t + h), Vir(t + k) - Viuna(t + k) — unx (8))
(3.28) 0 @

T—h
_h / /a  e(na(E+ B) - (na(t-+ ) — wna ()

T—h .
—h/ / fs(uh,\(t-l-h),Vuh,\(t-l-h)) . ('u,h)\(t-l-h) —uh,\(t)) =0.
0 Q

Using (3.14) with ¢ = up»(t + h) and (3.18) we get
T—h
(329) —h / / Folunn(t + k), Vun(t -+ B))una(t + b)
0 JQ

T
<h [ Clunlpthe < (€=,

In the same way we obtain

T—h
(3.30) h / / Fe(unr(t + B), Vupa(t + h))upa(t) < C.h.
0 Q
Similarly as (3.13) and (3.10), using (3.18) we get
T—h
@30 h[ [ aune )t R~ una@) < b
and

T—h
(332) h /0 /Q Ge(unn(t + h), Vupa(t + B)) - V(una(t + b) — una(£)) < Cok.

Taking into account (3.28)—(3.32) we obtain (3.19).
Now (3.19), (3.24), (3.25) Lemma 1.9 from (1] yield

(3.33) blura) = blue)  in LYQr)
and hence
(3.34) b(upy) — b(us)  almost everywhere in Qr

for a subsequence of (uyy) still denoted by (up)). Moreover, by Lemma 1.9 of [1]
(3.35) B(upy) — B(ue)  almost everywhere in Q7.
Since b is strictly monotone we have

(3.36) Upy — Ue almost everywhere in Qr.
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From Lemma 2 of [8], (3.36) and (3.18) it follows
(3.37) upx — ue  strongly in L9 (Qr) for any 0 < ¢ < p*
and by Lemma 3 of [§]
(3.38) Upx — ue  strongly in LPH1(Sy)

(N+min{8,m}+1)
for any 0 < g < DT ITE],
Using (3.33) we can prove in the same way as in [2] that

(3.39) 87 "b(upr) — Bb(ue)  weakly in L+HD/7(0,T; v*)

and that . satisfies condition (i) of Definition 1.

Thus, to complete the proof of the lemma it remains only to prove strong con-
vergence of Vupy to Vu.. To do this put into (3.5) v = wupy — wypy, where
wpa € LTT0,T;V)), are approximations of w. in L™(0,T; W2 (2)) N
L0, T; L™T1(R2)), i.e.

(3.40) wpy —wue  strongly in L™M(0, T W () N L™H(0, T; L™H(Q)).

By (H3) we have

t i t
(3.41) / (87 "b(unn), v) + ¢ / / (Vo4 < — / / G (s, Vi) Vo
0 0 JQ 0 JQ

+/0t /mge(uh,\)v+/Otfﬂfg(uh,\,VuhA)U-

First consider f(f Jo fe(unr, Vupa)v. From (HS5) and the Holder inequality it
follows

t 1 pr 1 8 i
//lfe(uh,\,vuh,\)llvlSC(1+(—) +(—) )//luhA_whAl
0 Ja € 3 0 Ja
t 1/(r+1)
Sc'(/ / |uhA—whA|T+l>
0 Jo

Since r < p* by (3.37) and (3.40) we obtain

(3.49) /0 /ﬂ | FeCtn, Vana)|o] < o(1),

where o(1) denotes any term converging to zero as (h, A) — (0, 00).
Next, by (H6), the Young inequality and (3.38) we have

t t 1/(a+1)
(3.43) / / |ge(UhA)||v|SC( / / |uM—wM|a+1) — o).
g JOQ 0 JoQ
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Now consider

t
//ae(uh,\,vwh,\)'vv
o Ja

/Ot/n[ae(um,Vwm\) — ae (e, V)] - Vo

t
//ae(us,Vue)-Vv
o Ja

t t
< 7]/ L |Vv|r+1 + C'("I) / / |ae(uh)\, V’U)h)‘) — a’e(us, Vus)l(r+1)/r
0 0 JOQ

t
//as(uE,VuE)Vv
0 Jo

Since operator A.¢ = a.(z,t,$) (where ¢ = (¢1, Vo)) maps L™ (Q7) into
Lr+t3/7(Qr), it is continuous (see for example [6], pp. 20-21). Hence (3.37)
(because r < p*) and (3.40) yield

<

(3.44) +

+

t
(3.45) / / lae(uns, Viona) — ae (e, Vo) "7 -0 as (h, A) — (0, 00).
0 Q

Moreover, since ag(ug, Vue) € Lr+1/7(Qr) from (3.25) and (3.40) it follows

(3.46) ‘ /0 t /ﬂ 0c (e, Vie) - Vo 0 as (h, X) — (0, 00).

At last, it can be proved in the same way as in [2] that

Gan [t 2 g [ [ Blm®) - [ B +o.

Taking into account (3.41)—(3.47) we obtain

(3.48) / (Bluna(t)) - Bue(®)) +C / /Q funs — Ve [+ < o(1),

if n is sufficiently small.
By (3.35) and Fatou lemma

timinf | (Blunn(®) ~ Bus(t)) 2 0.
A— o0 Q
Therefore from (3.48) it follows
(3.49) Vupy — Vu,  strongly in L't ((0,¢) x Q) for t < T.
Hence (3.37) and (3.49) yield

(3.50) ac(Unx, Vury) = ae(te, Vi)
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and
(351) fs(uh)\y vuhA) - fe(uEy VuE)

almost everywhere in Q7 and hence weakly in L+1/7((0,) x Q).
Moreover, by (3.38) and Theorem 1 of [6] (see pp.20-21) we have

(3.52) ge(upav = ge(ue)v

in L1(S;) for any v € L™1(0,T; V) N L=(0, T; L™+ (2)).
From (3.39), (3.51)—(3.52) and (3.5) it follows that u. satisfies (ii) of Definition 1.
This completes the proof of the lemma. ]

REMARK 1.When a7, f7, ¢ and a; depend on t, then instead of (3.5) we use
the equality

(3.53) / Bt‘hb(uh,\)v +/ ash(uh)\,Vuh,\)V'u
Qr

Qr

= / Jen(unx, Vura)v +/ gen(unn)v=0 Vv eV,
Qr St

where ach(2,9) = £ [ ac(z,5,2,9)ds, fen(2,0) = } [i* | fe(@,8,2,9) ds, g:(2)=
%f:‘_l ge(z,8,2)ds for any z € 2, z € R”, g € R™V.

3.4. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. First we prove that there exists T* € (0, T] such that

(3.54) ess sup / B(uc(t)) <C.
0<t<T* J2
and
(3.55) asonp [ @O+ 4 [ el o <C.
0<t<T* JQ 0 +1

In order to do this put as in [8] v = x(o,s)ue into the identity

(3.56) / (Oeb(ue),v f/ ac(ue, V) - V'u—f/ ge(ue)v

- / folue, Vaolo, Yo € L0, T; V)N L2(0, T; L™ (5)),
Qr
where X(o,¢) is the characteristic function of (0,t). Using the equality (see [2])

(3.57) /0  (Oub(ue), 1) = /Q B(uc(t)) — /ﬂ Buo)  for almost all £ € [0, T),
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we get

/Q Blue(t) + / /Q e, V) - Ve
:,/(1B(u0)+/[3¢ gs(us)ue+//QT fs(ue,Vus)-us-'
Applying (H3) we obtain

(3.58) /9 Bluc()) + ¢ / /Q IV

< /ﬂB(u@ - //Q: ac(ue,0) - Vue + f/st Ge (e Yue +//Q, fe(ue, Vu,) - Vu,.

Estimate the integrals in (3.58) succesively. Using (H4) and the Young inequality

we have
t i t
/ ] e (e, 0)| [ Vize] <7 / / Ve + C(n) / f e+
0 Q 0 Q 0 Q

(3.59) ¢
+C(n) / /ﬂ e P + C(n).

Next, using (H6) we get

(3.60) / fs oot < O / /S 40

Applying now (H5) and the young inequality we obtain

@on) [[ UetueVuluel < [[ fuepti+en [[ v
Q: Q: Qt

+C("7) /f |us|(r+1)/(r+1—s) +C.
Q¢

Taking into account (3.58)—(3.61) we have

t
B ! r+1 <! // r+1 r+1
[ B+ 6t [ el o < G( [ e+ [ ud

+ [ weieren=a) v [ juies v

Now, in view of assumptions (i) and (iii) we apply inequality (2.1) to fot Jo luelPt!
and to f; Jo lue |0/ +1=9) with p = £, respectively. Next, by assumption

(3.62)

(ii) we apply to fot Jq lue|**! the interpolation inequality from [8] (see Proposi-
tion 2.) and since r < p* we use to fot Jo lue|™! inequality (2.1). Hence

/Q B(uc(t)) + C1 /0 t el s, @) < Co /0 t ( /n B(us(s)))7+1 ds+ Cs
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for a.e. ¢ € [0.T") and some positive constants C; and -y > 0, which are independent
of .

Repeating further exactly the same argument as in [8] we obtain (3.54) and
(3.55).

The next step relies on proving the following estimate

T —h
(3.63) /0 /Q (Bue(t + ) — b(ue())) (ue(t + B) — ue(t)) dt < Ch.

To do this put.into (3.56) (as in [8]) v = x(t,s4+n)w, Where w € V. Then

t+h
(3.64) (b(ue(t+ h)) — blue(t)), w) +/t /Qas(uE,Vug) -V

. / o fa geluw = / - /Q o (te, Vue)w.

Hence for sufficiently small A we have
(3.65) [ (et + )~ b))
0
Sh(/ |a's(u5a VUE)Vw| +/ |gs(us)w|
Q Q
+ [ Ifsues Puul +.©)
o)

where C > 0 is a constant.

Next, put w = (5(ue(t + h) — ue(t)) - (ue(t + h) — uc(t)) and integrate (3.65)
(with respect to t) over (0,7* — h). Then using as before (H4)—(H6), the Young
inequality and the estimate

”C&()(ue(t + h’) - ue(t)”V < ”ue(t + h) - us(t)”V a.e. in (O,T* — h)

we obtain

T*—h
/ / (b(ue(t + h)) — b(ue(t))) - (Cs(-)(ue(t + h) — uc(t)))
0 Q

T*
rt1 P+l (r+1)/(r1-5)
(3.66) <Ch /0 (““E'W:Hmﬁ /Q Jue P + /Q e

* fuer () )

Applying (3.54), (3.55), interpolation inequality (2.1) and Proposition 2 or Re-
mark 2 from [8] we get that the left-hand side of (3.66) is estimated by Ch (where
C is independent of ¢, h, §). Hence using the convergence

Co(-)(ue(t+h) —ue(t)) mus(t+h) —ut) asd—0
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almost everywhere on Qr+_j and Fatou lemma we obtain (3.63).
By (3.55) we can choose a subsequence of (u) still denoted by (u.) such that

(3.67) ue —u  weakly in L™TH(0,T*; W/, 1(Q)) as € — 0.

Thus from (3.67), (3.54), (3.63) and from Lemma 1.9 of [2] it follows that

(3.68) blug) — b(w)  in LYQq)
and
(3.69) b(ue) — b(u)  a.e. in Qp«

for a subsequence still denoted by (u.). Moreover
(3.70) B(ue) — B(u) a.e. in Qp-.
Since b is strictly monotone we have
(3.71) L Ue— U aein Qe
From Lemma 2 of [8], (3.71) and (3.55) it follows
(3.72) ue > u  strongly in L9t (Qr+) for any 0 < ¢ < p*
and by Lemma 3 of (8]
(3.73) ue —u  strongly in LP*+1(Sp)
forany 0 < 8 < wﬂ
Since u. satisfies condition (i) of Definition 1, by (3.69) we have

(3.74) 0:b(ue) — 9;b(w) weakly in L+D/7(0, 7%, v*)

and condition (i) of Definition 1 is satisfied on Qr+. As before, it remains to
prove strong convergence of Vu. to Vu. We use the same argument as in the case
of Vupa. Thus, put into (3.56) v = X(o,¢) (e — we), where w, € L™+1(0,T% V) N
L*°(0,T*; L™*1(2)) are approximations of u in L™+1(0, T*; V)NL>(0, T*; L™H(D)),
ie.

(3.75) we —u  strongly in L™ (0, T*; V) N L=(0, T*; L™1(Q2)).
Hence (3.75) and interpolation inequality (2.1) yield

(3.76) we > u  strongly in L9 (Qr-) for any 0 < ¢ < p*.
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Using (H3) we get

(3.77) / (Bub(w), v) + f Vo[

<o J[. et Tuo s [ e

+ / felue, Vug)v.
Q.
By (H5) and the Holder inequality we have

[N sc[ [ e
Qt Qt
p/(p+1) 1/(p+1)
_|_ (/ |u€|P+1) (/ |’U,£ _wE|P+1)
Qi Q+
8/(r+1) (r+1—s)/(r+1)
o)™ (™)
Qr Q:

Using now (3.55), (3.72), (3.76), inequality (2.1) and conditions (i) and (iii) of
Theorem 1 we get

(3.78) / [ 15, Vuelbol < o(0),

where o(1) denotes any term converging to zero as € — 0.
Next, by (H6) and condition (ii) of Theorem 1

(3.79) / [ loc(we)lvl < o)

At last
‘f/tas(ug,VwE)V@ < ‘/_/;?t [ae (e, Vwe) — a(u, Vu)] - Vo

| J], dno-ve

<Tl// (Vo™ + O(n) / |ae (e, Vwe) — a(u, Va)|T+D/7
s

Ce(ue) — 1 a.e. in Qp«

by (3.72) and the Lebesgue dominated convergence theorem we have

(3.80)

Since

(3.81) Celue)ue — u strongly in Zq+1(QT*) for0<g<p”.
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Therefore from the continuity of the operator A¢ := a(z,t, ¢) (where ¢ = (¢1, Vo))

mapping both L™t1(Qz+) x L™Y(Qrs) into LU+tD/7(Qre) for v > +&r and

LPH(Qr) x L™Y(Qp-) into L(r+1)/r(QT.,) for r < r_’”& (see [6], the proof of
Theorem 1, pp. 20-21) and from (3.75) it follows

(3.82) // |ae (e, Vwe) — a(u, Va)|™/" 50 ase—0.
Qe
Furthermore, since a(u, Vu) € Lr+D/7(Qr.) using (3.66) and (3.75) we have

//t a(u, Vu) Vv

At last we have to consider fot (0:b(ue),v). Since u and w.satisfy the condition
(i) of Definition 1, Lemma 1.5 of [2] implies (3.57) and

/0 (Oub(u), u) = /Q B(u(t)) - /Q Blug).
Hence by (3.74) and (3.75) we have

(3.89) /0 (Orb(ue,v) = /ﬂ (B(ue)®) - B(u(®))) + o(L).
Therefore (for sufficiency small ) (3.77)—(3.80) and (3.82)—(3.84) yield
/9 (Buc(t) - Bu@) +C [ /Q 1Vt = Va1 <o),

Hence Fatou lemma implies

(3.83) —0 ase—0.

Vu, —» Vu  strongly in L™((0,%) x Q) for t < T*
and therefore
(3.85) ¢e(Vue)Vu, — Vu  strongly in L™1((0,1) x Q) for t < T*.
Using (3.81), (3.73), (3.85) and Theorem 1 from [6] (see pp. 20-21) we get
fe(te, Vue)v — f(u, Vu)v  in L1(Qy)
and
ge(ue)v = g(u)v  in L'(S;) for any v € L™TH(0,T*; V) N L>=(0, T*; L™t ().

This completes the proof of the theorem.
The proof of Theorem 2 is the same as in {8].
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4. Problem (1.1)—(1.3) in the case b = id
When b =id system (1.1) takes the form

(4.1) O’ — V- d?(z,t,uVu) = f(z,t,u, Vu)
inQr:=0x(0,7), 5=1,... ,n.

We call a vector-valued function v € L™1(0,T; V) N (L*®(0,T; L2(Q)) a varia-
tional solution of (4.1) with boundary condition (1.2) and initial condition (1.3) if
u satisfies Definition 1 with b=id and m = 1.

For problem (4.1), (1.2), (1.3) we obtain the following theorems analogous to
Theorems 1 and 2, respectively.

THEOREM 3. Let conditions (H3)-(H6) of Section 3 be satisfied. Moreover,
let ug € WL, 1(R) and ui € L'(Q). Then there ezists T* € (0,T)] such that prob-
lem (4.1), (1.2), (1.3) has a variational solution u on Qr- provided the following
conditions are satisfied:

(i) 0 <p < p*:=max{1, ﬂN%m},
- (N-+min{o,1}+1 |
(ii) 0<a< ™t m';:,{a ;

(ii) 0 < s < 8* ;= max {££L, {OCEDH2Y
THEOREM 4. Let conditions (H3)—(H6) of Section 3 be satisfied. Moreover, let
ug € W} 1(Q) and uf € L*(Q). The problem (4.1), (1.2), (1.3) has a variational

solution on Qr for any T > 0 provided the following conditions are satisfied:

@ p<1 (p<lifp*=1);

(ii) either 0 < o <min{l,7} or0<7r<a < % and

\ .

2r in the case N =1,

a<di for N=r+1,
N(r41)—r 1= (N4 1) (r—1)°+8r(r+1)  up oo

2(N—r—1)
(i) s < T (s < gL if s* = o).

The proofs of Theorems 3 and 4 are analogous to the proofs of Theorems 1
and 2.
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