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Consider the fourth order boundary value problem

{ u" = g(u) + e(t),

(P) .
u(-) T - periodic,

where g : R — R is a continuous function satisfying

@) lim g(x)sign(z) = +oo

||

and e : R — R is continuous and T-periodic (more general conditions for the
function e(t) will be considered in Section 5).

Various results for the solvability of problem (P) have been obtained in cases
when asymptotically the ratio g(z)/z does not interfere with the eigenvalues of the
differential operator v"” in the space of T-periodic functions. With this respect,
we refer to the articles of Omari and Zanolin [10], De Coster, Fabry and Habets (5]
and Gupta and Mawhin [7]. The possibility of a function g which grows faster than
linear at +o0o (or at —oo) has been considered by Ward [11] and Afuwape, Mawhin
and Zanolin [1]. In these latter papers, however, a rather strong restriction for the
growth of g at —oo (respectively at +oco) has to be assumed in order to obtain the
a priori bounds for the solutions.

In this work we consider an example that, as far as we know, is new in the study
of the periodic problem for higher order ordinary differential equations. Namely,
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we examine the case when g is superlinear at infinity, that is
)] lim 9(=) = +00,
holds, and prove the following:

THEOREM 1. Under condition (j), problem (P) has ct least one solution, for
any function e(t).

Clearly, (j) implies (i), but during the next discussion, we prefer to examine
separately the effect of these conditions on the behaviour of the solutions of (P).

Condition (j) in connection with the periodic problem for the second order

differential equation
—u” = g(u) +e(t),

has been considered by many authors and the approaches used to obtain existence
of solutions in this case are of different nature. In a recent paper [4], jointly with
A. Capietto, we have developed a new continuation theorem in order to deal with
abstract problems in which there are no a priori bounds for the solutions, and we
have applied this result to the solvability of second order differential equations with
superlinear nonlinearities.

Here we apply the abstract result in [4] to problem (P). To this end, we follow
the steps indicated below.

1. Abstract setting

We embed problem (P) into a one-parameter family of problems of the form

{ " =g(u)+p(t,v,A),  Aeo,1],

P
(Ba) u(-) T - periodic,

where
p(ty, A) = (1 = A)(y) + Ae(t), for A e|0,1],

and ¢ : R — R is a continuous function such that

C(Wy<0, Vy#0, and [((¥)|<1, VyeR

For notational convenience, we also define

f(t,z,9,2) := g(u) + p(t, o', A),
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so that problem (Pj) can be written also as

{ uIIII — f(t, u, 'U:I, A), A S [0) 1]7

P
(P2) u(-) T - periodic.

By the above positions, it follows that problem (P) corresponds to (P;), while
for A =0, we have

P
(Fo) u(-) T - periodic.

{ w" = ((u') = g(u),

We introduce now the following notations.

For any T-periodic function v, we denote by |v|g, (1 < ¢ < +00) its L9-norm
with respect to the interval [0,T]. Let X be the space of the T-periodic real valued
functions of class C? endowed with the norm

3
lull = luloo + D [u®|oo
i=1

and write (P,) as the equivalent operator equation
(1x) Lu = N(u, ) := Nyu, A€ |0,1],

where L : u — u”” is a linear Fredholm mapping of index zero defined in dom I =
{u € X : uis of class C*} C X with values in the space Z of continuous and 7-
periodic functions with the || - norm, and N : X x [0, 1] — Z is the superposition
operator defined by the right hand side of the equation in (Py). From classical facts
(see [8]) it follows that N is L-completely continuous and hence the coincidence
degree Dr(L — N, ?) is defined for any open bounded set @ C X such that Lu #
Nyu for u € 9.
We also denote by
% C X x[0,1]
the set of solutions (u, A) of (1) and define, for any A € [0, 1],

Yy={uedomLl: (u,A) e}

In other terms, X, is the set of the solutions u of (Py) for a fixed A € [0,1].
Now we observe that from (i) and the choice of the function ¢, it follows that

(2) Yo is bounded and Dy (L — Ny, ) # 0,
for any open bounded set 2 C X with
3o C Q.

Indeed, if » is a solution of (Pg), then multiplying the equation in (Py), by ’ and
integrating on [0, 7], we obtain that fOT ¢(u/(t))u'(t) dt = 0 and thus u(t) = k € R,
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for a suitable constant k. Then we have g(k) = 0 and therefore, by (i) it follows
that k € (—dy, dp) where dop > 0 is chosen such that g(z)z > 0 for |z| > dp. Hence
3 is a bounded subset of X made by constant functions. Moreover, for any (2 as
above, it follows from [3] that

IDL(L - NOaQ)I == ‘dB(ga (_dO,dO)aO)l =1

where dp is the Brouwer degree in R. In the sequel, B(0, R) denotes an open ball
in X of center 0 and radius R > 0.

2. Continuation theorem

According to [4], and having proved (2), we can now use the following result:

LEMMA 1. Suppose that there ezists a continuous functional
¢: X x[0,1] = R* = [0+ o0)
which satisfies the following conditions:

(k1) AR >0: dw,N)EN,  V(uA) €\ (BO,R) x [0,1]);

(k2) Y N¢~Y(n) is bounded, Vn € N.
Then equation (1,) and thus problem (P) has at least one solution.

For our problem, we define the continuous functional ¢ as follows:

T
o)1= | [ @ - wion @t v)

where

. 1
6(z,y) := min {1, W}

(see [4] for a similar definition).

From now on, all our work will be that to show that the functional ¢ that
we have chosen satisfies the conditions (k;) and (kg) with respect to the set of
solutions ¥ of problem (P)). Since the above conditions are vacuously satisfied if
¥ is bounded, we can assume henceforth that

¥ is unbounded in X x [0, 1],

that is there are solutions u to (P,) with arbitrarily large norm in X. Then we
prove some qualitative results concerning such solutions.
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3. Analysis of the solutions

Firt of all, using (i), we fix a constant d > 0 and a constant M, such that
(3) g(z)sign(z) > M > 1+ |e|oo, for all |z| >d.
Note that by the definition of p it follows that
(4) p(t, 4, M S 1+leloo <M, V(t,y) €R%A€[0,1],
and therefore,
(5) f(t,z,y, N)sign(z) > € >0, Y|z| > d, (t,y) eR?, Ae|o, 1].
Let u be a solution of (P,) for some X € [0, 1]. Define also u*(t) := max{u(t),0}

and 4~ (¢) := ut(t) — u(t). Throughout this section, only condition (i) is assumed.

LEMMA 2. If any of the following quantities: | |oo, |4 |00 [%|oos % |00 [4"]oo,
|u™|oc, 18 bounded (by a constant independent of u and A) then |lu|| is bounded as
well.

PRrOOF. First of all, we observe that from (5) and taking the mean value at
both the members of the equation in (P,), we easily obtain that there is £ € [0,7)
such that

(6) u@) < d.

This clearly implies that if any of the quantities |¢'|oo, |t ]|co, [4™|co, is bounded,
then |u|oo is bounded as well and therefore the L'-norm of f(:,u,u’, ), satisfies
(7) |f(-,u,u',/\)[1 S C1,

where ¢; > 0 is a constant independent on (u, A). Then, from the equation in (P))

it follows that
|U””|1 S C],

" has mean value zero in a period, we obtain

and hence, using the fact that v
(8) 4" |0 < e1.
From (8) and (6), we now obtain

lull <d+ (1+T+T?e.

Thus it remains only to check that the result is still true if we assume that |ut|o
(respectively, |u™|oo ) is bounded. To this end, we argue similarly as in [11]; some
minor details will be omitted. Assume that

[ut oo < €2
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and consider the sets
A={te[0,T] : u(t) < —d}, B:={te[0,T] : —d < u(t) < c}.
Then AU B = [0, T|; moreover, from (5) it follows that
[F(8,ult), v/ (), M| = —F(t, u(t), v'(2), ), Vte A
Recall also that fOT f(t,u(t), u'(2), Ay dt = 0.

Now we have

T
£ D= [ 1w, w0, e
_ / —f(t,u(t), W (8), N) di + / £t u(t), w'(0), V)| dt
teAd teB

_ / F(t,u(t), w (), A) dt + / £t u(t), W' (0), V)| dt
teA teB

T
+ Ft,ult),u'(t),\) dt

teB
<2 / P u(), w'(2), N dt
teB

<L2T(M + max{|g(z)| : —d € z < ¢2}) 1= c3.

Thus we have proved an inequality like (7) (just with the constant c3 in place of
¢1). The rest of the proof follows the same steps as above and permits to conclude
with
flu] < d+ 1+ T+ T?)cs.
Clearly, the same conclusion holds if |4~ |o, < ¢2. The proof of Lemma 2 is complete.
O

From Lemma 2 the following consequence is straightforward.

PROPOSITION 1. There is a nondecreasing function n : RY — Ry := (0, 400),
with 1(r) > r for any r > 0, such that

llull 2 n(R),  implies  min{{u" oo, [~ |oo, |%|oo, [u”o} 2 R.

According to Proposition 1, we can now claim that any large solution u to (Pj)
must necessarily oscillate, i.e. it has at least two zeros in [0, T). Our next goal is to
show that for ||u|| large the zeros of u are simple. With this respect, we recall that
a basic feature of the second order differential equations without damping term,
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which allows to perform some useful estimates about the distribution of the ZEeros
of the solutions, is the existence of an “energy relation” for the equation. In the
next result, we find an energy-like relation for the equation

(9) =" = g(u) + q(2),

where ¢ is any continuous function defined in the real line. We also introduce the
potential G of g defined by

G(z) := /Ox g(s)ds.

Observe that from (3) it follows that the function G is bounded below. Hence we
can fix a constant 47 > 0 such that

2G(z) > —, Yz eR.

LEMMA 3. For any solution u of (9), defined on a interval I C R, the following
relation holds:

(B) 50 (6 + Glu(t) — u" (/1)

= 36+ G ~ ") - [ @, Vel

PROOF. It is sufficient to differentiate (E) with respect to ¢ in order to obtain
(9) multiplied by «/(t). O

Our next result is a technical lemma which turns out to be useful in the proof
of the simplicity of the zeros of the solutions. In what follows, u is an arbitrary
solution of (P,), i.e. a T-periodic solution of (9) for ¢(t) = p(t,u'(t), A).

LEMMA 4. For any constant R > 0, there is a constant L(R) > 0 such that, if
to is a point of local minimum of u(-) with u(ty) > —R, then 0 < u”(tg) < L(R)
and, respectively, if to is a point of local mazimum of u(-) with u(to) < R, then
—L(R) <u'(t) <0.

PROOF. We prove only the first inference as the argument for the second one is
completely similar.

Suppose that ?o is a point of local minimum for u(-) with u(tg) > —R, and
assume that u”(tp) > 0 (if w”(to) = 0, the result holds trivially). Set also z(t) =
u” ().

Since z is a continuous T-periodic function with mean value zero and with 2(tg) > 0,
we can find an open interval J = (f,%s) containing to such that z(t) > 0 for all
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t € J and z(t;) = 2(t2) = 0. Then the function w is convex in J with u(t) > —R,
for all t € J and hence from (3) and (4) we obtain

2'(t) = 4""'(t) > - K, for all t € J,

with
K = K(R) =M +max{|g(z)| : —R <z < d}.

From the Taylor formula and using the fact that z” > —K in J, we have

0 = 2(t1) 2 2(to) + =/ (o) (f1 — o) — %(tl —10)% > 2(to) + 2'(to) (t1 —to) — KQT .
0= 2(t2) 2 z(to) + 2/ (to)(t2 — to) — g(tz —t0)? 2 2(to) + 2’ (to)(t2 —to) — K;FZ.

Observe now that t; — tp and t3 — g have opposite sign and, therefore, at least one
of the two numbers 2/(to)(t1 — to), #'(to)(t2 — to) is nonnegative. Hence we have

KT?
2 7

z(to) € L(R) :=
which proves the result. O
Now we are in position to state the next result.

PROPOSITION 2. There is Ry > 0 such that if ||u|| > R, then v/'(t) # 0 for
each t such that u(t) = 0.

PROOF. Let g be such that
'U,(t()) = u’(to) =0.

We consider two possibilities:

Either u"(to) # 0, or u”(tp) = 0.

In the former case, t; is a point of local minimum or local maximum for u and
we can apply Lemma 4 with R = 0 and obtain that

[u”(to)| < L := L(0).

On the other hand, if u”(%o) = 0, then such inequality holds as well.
Now from the energy relation (E), computed at the points s = ¢y and ¢t = t*,
with £* such that

[ (t")] = [u"]oo =1, w"(t") =0,
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we obtain

r = _2G(u(t")) + L% — 2 / p(€,u'(€), N/ (€) de

ta
T
<Deeen [ W()de
0

< L? 4y 4+ 2MT?r,

where we recall that —2G(z) < 71, for all z. Thus we obtain
[u"|oo < Ro =1+ max{(2MT? + 1),L? + 1 }.

Now we can apply Proposition 1, which implies that ||u| < n(Rp). Then the result

is proved for any choice of Ry > n(Rp). O

Proposition 2 ensures that the zeros of a solution u with |ju|| sufficiently large are
isolated and therefore only a finite number of zeros can belong to the interval [0, T).
Moreover, the solution changes sign at any point at which it vanishes. On the other
hand, note that Proposition 1 guarantees that if |u|| > R;, then minu < 0 < maxw,
so that we know that zeros for u do exist and they have all the desired properties.
Hence we can now introduce the following notation: Let u be a solution of (P)
with ||u|| > R;. Then, it follows from Proposition 2 that there is an even number

n = n(u)
and there are n + 1 points
to<t <...<ti<tip1<...<tp=to+T,
such that ¢ € [0,7") and
u(t;) =0, ¥'(t;)#0, Vi:0<i<n-—1,

u(t) >0, Vtell:=(t,tis1), i even,
'Ll,(t) <0, Vte I,L_ = (t'hti-i-l)) % odd.
"The points ¢; are uniquely determined by the function u if we choose as ¢, the first
point in the interval [0, T) where © = 0 and »’ > 0.
Finally, for any i even, we denote by s; the first maximum point of v in the

interval Ii'" and for ¢ odd, we denote by s; the first minimum point of » in the
interval I; , so that

u(s;) = u} = max{u(t): t € I}'}, i even,

u(s;) = u; = min{u(t) : ¢t € I }, i odd.

Clearly, we have that u/(s;) = 0, for each index 1.
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REMARK 1. Assume |lu| > R; so that (u(t),v'(t)) # (0,0) for all t € R and
we can pass to polar coordinates and write u(t) = p(t) cos8(t), u'(t) = p(t) sin 6(¢).
Hence, as

w=wm—amo=5[m§ﬁm*wmmmmﬂ

L ()2 — ute ()
“l WP @2

for each i, we obtain the following formula:

1T — u(tu (1)
/0 it.

—n(u) = T u(t)? + u'{t)?

Now we can state a more refined version of Proposition 1 as follows.
PROPOSITION 3. There is a nondecreasing function § : [R1, +00) — Rf)" . with
B(r) > r for any r > R, such that

lull > B(R), implies min{|uf|: 0<i<n(u)—1}>R.

ProOF. For ease in the notation during the proof, we set u; := |u§t|, 2 =
1
u(s:)]-

From Lemma 3 we know that
Zi S L(u.,-),

thus, a bound for u; implies a bound for 2;.

Now, arguing as in the proof of Proposition 2, from the energy relation (E),
computed at the points s = 5; and ¢ = ¢*, with ¢* such that |u"(t*)| = |u"|e 1= 17,
u" (t*) = 0, we obtain

2 < 2max{|G(2)] o] < ul} —26((t)) + 2 — 2 [ pleu/(€) N ()t

T
< y(w) + 27+ + 2M/ [/ ()l dE < y(wi) + 2] + 71 +2MT?r,
0

where we have set v(s) := 2max{|G(z)| : |z| < s} and v; was already defined

above. Thus we obtain
[0 )oo < p = p(ui, 2) = 1+ mas{ (2MT? + 1), v(ws) + 2 + 7).

Then we can apply Proposition 1, which implies that ||u|| < n(p). Since p(u;, 2;) is
bounded if u; is bounded, the result follows immediately. O

A more precise picture about the behaviour of u(t) and v'(¢) comes from the
next results,
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LEMMA 5. There is Ry > Ry such that if ||u|| > Ry, then w/(t) # 0, for any
t#s;, (i=0,...,n(u)—1), t € [to,to + T].

PROOF. In order to avoid distinctions among various sub-cases, we develop the
proof only for the first interval Iy = I = (to,t1) where u > 0, u/(tg) > 0 > u'(ty)
and maxu = up = ud = u(so) > 0. The same argument will work (just changing
the indexes) for any interval I

For the interval Iy we have to prove that

u'(t) >0, Vte (to,s), u(t)<0,Vte (so,t1).

To this end, we observe that it is sufficient to show that if s* is any point in the

interval where «'(s*) = 0, then, necessarily «”(s*) < 0 and therefore any critical

point of u in I is a strict local maximum. Clearly, this in turn immediately will

imply that there is only one critical point of u in Iy and such a point is sq.
Accordingly, suppose, by contradiction, that

u'(s*) =0 < u(s%).

We consider now two poss]ibilities:

Either u(s*) < d, or u(s*) > d.

In the former case, if 4/(s*) > 0, then s* is a local minimum and Lemma 4
implies that

0 <4"(s*) < L:= L(0).

On the other hand, this inequality is clearly true even if 4”(s*) = 0. Then, from
the energy relation (E), computed at the points s = s* and ¢ = ¢*, with #* such
that |u”(¢*)| = |u”|e :=r, (as in Propositions 2, 3) we obtain

r? < 2max{|G(z)|: 0 S z < d} — 2G(u(t")) + L* - 2 / " p(E (O, N (€) de
<y(d) + L + 7 + 2MT?r, :
with v(s) and y; defined in the proof of Proposition 3. Thus we have
|v”|oo < p1 == p(d, L) = 1 + max{(2MT? + 1),v(d) + L? + 71}

and Proposition 1 yields {|u|| < 7(p1). Hence, this first case can be excluded if we
take [|lu|| > n(p1).

Suppose now that we are in the latter situation, that is, u(s*) > d. Here we
can use (5) and obtain

(W")'(s*) >e>0, and (u")'(t)>e, VteD:={tel:ut)>d}.
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By the Taylor formula applied to u” we have that
u"(t) 2 u’/(s*) + ull,(s*)(t _ s*),

for any ¢ belonging to a subinterval of D. Hence, choosing ¢ at the left or at the
right of s* so that u"/(s*)(t — s*) > 0, we have that u”(t) > u"(s*) >0, for all ¢ in
a one-sided (right or left) connected neighbourhood J of s* contained in D.

Now taking J maximal with respect to the inclusion in D, we can assume that
either J = [t_,s*) or J = (s*,14], with, respectively u(t_) = d, or u(ty) = d.
Then, applying the Taylor formula for u, we find

u(t) > u(s*), Vted,

which implies, respectively u(t_) > u(s*), or u(t4+) > u(s*). Thus, in any case, we
obtain u(s*) < d, which contradicts our starting assumption.

Thus, we have seen that the second case in our discussion can never occur and
therefore, from the first case, we have proved the result by choosing any Ry >

max{R1,n(p1)}- O
From Lemma 5 we have that if [|u|| > R3, then
u'(t) >0, YVt e J = (si—1,8i), i even

and

u'(t) <0, Vte J = (8-1,8), i odd,
for 0 < 7 < n(u) — 1, where, with obvious “cyclic” convention, we read s_; =
T+ 8,-1.

We note also that, as u’(s;) = 0, for each i and u/(t) # 0, for all t # s;, then for
any 1 even, we can choose the first maximum point o; of v’ in the interval J;" and
for i odd, we denote by o; the first minimum point of «’ in the interval J;, so that

w'(0;) = max{u/(t) : t € J}, i even,
v (0;) = min{u'(t) : t € J] }, i odd.

Clearly, we have that u”(0;) = 0, for each index 4.
Now we can state an analog of Lemma 5 for «’ as follows:

LEMMA 6. If ||ul| > R, then u”(t) # 0, for anyt # oy, (i =0,... ,n(u) — 1),
te [5_1,8_1 + T}

PROOF. First of all, we claim that «"(s;) # 0, for each i.
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Actually, this assertion has been already checked in the proof of Lemma 5 for
s; = 8. For completeness, we give here another short and direct proof of the claim,
assuming Ry > B(d + 1) (this is not restrictive: just take a larger Ry in Lemma 5,
if necessary).

Indeed, if, by contradiction, u”(s;) = 0 for some ¢, then, using the Taylor
formula and recalling (5) and |u(s;)| > d (which follows from Proposition 3), we
obtain

[u(e)] > (i) + 50" (s5) ¢ — 5:) sign(us:)
for t # s; in an open interval containing s; where |u(t)| > d. Then, taking ¢ such
that u'/(s;)(t — 8;)%sign (u(s;)) > 0, we contradict the fact that |u(s;)| is a local
maximum of |u(-)|. Thus our claim is proved.

The proof now follows a similar argument to that of Lemma 5; this time v’
plays the role of u.

We consider only the first interval Jo = Ji = (s_1,80) where v/ > 0 and
maxu' = u'(09) > 0. The same argument will work (just changing the indexes) for
any interval Jii.

For the interval J; we have to prove that

v (t) >0, Vte(s_1,00), u"(t) <0, V1t € (00, 50)-

To this end, we observe that it is sufficient to show that if ¢* is any point in the

interval where u’(0*) = 0, then, necessarily «"/(0*) < 0 and therefore any critical

point of v’ in Jg is a strict local maximum. Clearly, this in turn will immediately

imply that there is only one critical point of %' in Jp and such a point is oy.
Accordingly, suppose, by contradiction, that

UH(O'*) =0< ulll(o_*)_

We consider two possibilities:

Either |u(c*)| < d, or |u(c*)| > d.

In the former case, from the energy relation (E), computed at the points s =
o* and t = t*, with t* such that |u”(¢t*)] = |u”|e := 7 and observing that
—u"{6*)u/(6*) <0, we obtain

t‘
r? < 2max{|G(z)| : 2] < d} — 2G(u(t")) - 2/ (&, v/ (§), \)u'(€) d¢
< v(d) +m + 2MT?r.

Thus we have

[t |oo < p2 := p(d,0) = 1 + max{(2ZMT? + 1), y(d) + T}
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and Proposition 1 yields ||u| < n(p2) < n(p1), where p; was defined in Lemma 5.
Hence, this first case can be excluded if we take |[u| > Bz > n(p1).

Suppose now that we are in the latter situation, that is, |u(¢*)| > d. Just to
fix the next discussion, say that u(c*) > d. Hence, as v’ > 0 in Jy, we have that
u(t) > d, for all t > o*. Now we can use (5) and obtain for the function y(t) := /(t)
that

y(c*) >0, (") =0, ¢"(6*)20, y"({t)>e, Vteo* s0)
From the Taylor formula applied to y we find
y(t) > y(a*) > 0, Vtel[o* so).

Hence, passing to the limit as ¢ — sp, we obtain 0 = y(sg) > y(o*), contradicting
the fact that y = v’ > 0 in (51, 8¢). Clearly, the same argument works if we assume
u(c*) < —d (the only difference is that this time we would find a contradiction
letting t — s5_1).

Thus we have seen that the second case in our discussion can never occur and
therefore the result is proved. O

From Lemma 6 we have that if ||lu| > Rs, then
u’(t) <0, YV te(oi,0i41), i even
and
u"(t) >0, YV te€ (os0i11), i odd,
for 0 <7< n(u)-1.

We introduce now a further definition. Let D > 0 be a given constant and
consider the set
Wp(u):={teR: |u(t)| < D}.
It is clear that Wp(u) is a T-periodic set and we already know that if |jul| >
max{B(D), Rz}, then u/(t) # 0 for all £ € Wp(u) (see Proposition 3 and Lemma
5). More details are given in the following result.

PROPOSITION 4. For any D > 0 and A > 0, there is a constant R(D, A) > R,
such that if u is any solution of (P)), then

lu|| > R(D, 4), implies min{|u'(¢)] : t€ Wp(u)} > A.
PROOF. As remarked above, from Proposition 3 and Lemma 5, we have that

if |u| > max{B(D), Rz}, then Wp is made by the union of disjoint open intervals
and it can be easily seen that Wp(u) N [g, o + T consists of the union of exactly
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n(u) open intervals. Now, let (79,71) be one of such intervals and, for definiteness,
suppose that

v (t) <0, Vt € (19,71) C (S0, 81) = J] .
By Lemma 6, we know that 4’ < 0in J;” and u”(t) # 0 for any ¢t € J; \ {o1}. We
now examine possibilities. First,

(a1) o1 € (S0, 70)-
In this case, (o1,1) D [70,51), and therefore
/() <0, and ”(¢) > 0, VteE[m,s1).
Hence,
(10)  min{|/@)|: t € [ro, 1]} = [u/(1)| = max{|w/(¢)| : € [r1, 5]}

Therefore, from the second equality in (10) and using the fact that u(r;) = —D and
u(s1) = min{u(t) : ¢t € [r1, 5]} = min{u(t) : t € (t1,22)} = up, we easily obtain

(11) lur| < D+ (81 — 1) max|v| < D+ T|u'(m)].

Then, from (11), the first equality in (10) and Proposition 3, we have that

(12) min{|v'(¢)| : t € [10,71]} > A4, for {lul| > B(D + AT).
The second possibility to consider is

(az) o1 € (70, 71)-

In this case, a moment of reflection (arguing like in (a1)), shows that

min{|u'(t)] : t € [70, 7]} = min{|e' (o)}, |’ (1)}
= min {max{|v'(t)| : ¢ € [so, 70|}, max{|u/(t)| : t e [11,81]}}-

From this, we easily obtain
min{ug, [uy |} < D + T min{|u'(r0)|, [’ (1)},

where we recall that uf = max{u(t) : t € (to,t1)} = max{u(t) : ¢ € [so, 0]} =
u(so). Hence Proposition 3 yields (12) as well.
The third and last possibility is

(33) o1 € [T],Sl).

Clearly, this case is completely symmetric to (a;) and (12) can be proved in the
Same manner.
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Since the estimates we have found are independent of the particular subinterval
of Wp(u) that we have chosen, we can conclude that the result is proved, just
taking

R(D, A) :== max{B(D + AT), Ra}.
O

REMARK 2.Take D = A = 1 and apply Proposition 3 and Proposition 4 to
obtain that (u(t),«'(t)) € (—1,1)2, for all t € R. Hence, u(t)® +v/(t)2 > 1 for all ¢
and therefore Remark 1 and the definition of the functional ¢ yield

n(u)

(13) Pl ) = ——.
Then, the first condition of Lemma 1 (i.e. (k1)) is fulfilled with R* = R(1,1).

We notice, that until now, only the sign condition (i) has been used. To proceed
further, we need to find some estimates for the distance of two consecutive zeros of
u. Hence we set

= ti —t.i
Alw) = Sig;ag;)_l{ +1—ti}

and observe that

T
22 Ky

so that, we can prove that n(u) — +oc as ||u|| — +oo if we show, that at the same
moment A(u) — 0. To do this, we need an upper bound for A(u). This comes
from our last lemma below.

LEMMA 7. Let Dy > d and K > 0 be such that

—g(;) > H¢ > K%, forall |z| > Dy.
Then there is a constant rg > Ry such that
2
lull >k,  implies A(u) < Y{’E

PRrOOF. First of all, we take D > Dy and H > 0 with
Hy > H* > K*,
such that
f(t, z,y, N)sign(z) > H*|z|, V|z| > D, (t,y) eR? A€ 0,1].
Hence, we have immediately that for any solution u of (Py),

u™ (t)sign(u(t)) > K*|u(t)), VieM:={teR: |ult) > D} =R\ Wp(u).
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Taking [|u|| sufficiently large (e.g. |lu|| > max{8(D), Rz} ), we have that the points
8;, which are the points of local maximum (for ¢ even) and minimum (for i odd)
for u, are such that |u(s;)| > D, with u/(t) # 0 for all ¢ # s; (see Proposition 3 and
Lemma 5). Then, the set M is made by the disjoint union of closed intervals. In
particular, M N [ty,to + T] is made by the union of n(u) disjoint intervals where

u(t) alternates its sign.
Let [an, @1] C (to,t1) be one of the intervals of M, so that we can assume;

u(t) > D, Vte (ag,al),

0<U(t) < D, Vte (t(),ao)U(al,tl)
and sp € (ag, 1), with so the point of maximum of u in [tg, ¢].
We claim that

27
(14) o1 — Qg S ﬁ

Indeed, assume, by contradiction, that o; — ay > %’ then we choose a number a

such that
T T
sp € (@ — E,Oﬂ+ H) C (@, 1)
and consider the function

= b.

T T
= t— = - < < —_
v(t):=1+4+cosH(t — a) for a:=a H_t_a+H.

It is easy to check that all the following properties are satisfied.
v(a) = v(b) = v'(a) = v'(b) = v"(a) = v""(b) =0,

v'(a) =v"(b) = H?, o""(t) = H*(v(t) — 1), Vi€ [a,b],
u'(a) > 0> u'(b), " (t) > Hu(t), Vté€la,b.
Then we have

b
0> H2(u/(B) — u'(a)) = / dii(u'"

v—v"u— " + V") dt

b b

= / (W™ (t)v(t) — v (t)u(t)) dt > / H*(u(t)u(t) — (v(t) — 1)u(t)) dt
a b a

=H4/ u(t)dt >0

and a contradiction is obtained. Thus (14) holds true.
Now we choose a constant

1 DHK

A 2
>7TH—K
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and apply Proposition 4 from which we know that if ||u|| > R(D, A), then |u'(t)| >

A for all t € (tg, ap) U (a1,%1). Consequently, we obtain

H-K
HK

(15) (a() - t(]) + (t1 — Oll) < 2D/A =27

From (14) and (15) we have that
H-K 2r

HK K’
Clearly, the same upper bound can be obtained for any of the intervals [¢;,%;41] and

2m
t1—t0=(ao—t0)+(a1—ao)+(t1—a1)§ﬁ+27r

hence we have proved our result, for
Tk = R(D ’A)a
with D and A defined in the course of the proof. |

Now we are in a position to conclude.

4. Proof of Theorem 1

As announced before, we use Lemma 1.

In Remark 2, we have already seen that (k;) is satisfied and, via formula (13),
d(u, A) = 2 for each (u, ) € X with [|lu]| > R*, so that ¢(u, ) > 1.

In order to prove (kg), we fix any natural number & > 1 and consider the set
Uy, of the solutions u of (Py) such that n(u) = 2k. Using (j), we find Dy > d and
K = Ky, = (4kn/T) + 1 satisfying

g(ﬂf) > (K + 1%, for all |z| > Dg.

Then, there is a constant R, := rx which makes the inference of Lemma 7 fulfilled.
Now we claim that
el < Ry, Yu € U.
Indeed, if, by contradiction, there is a solution v with ||u| > R}, then, by the choice
of K, A(u) < T/2k and therefore, n(u) > T/A(u) > 2k, which implies u & Uj.
Then also, (kz) is satisfied and the theorem is proved. O

5. Final remarks

The result can be extended to the slightly more general problem

(P/) { " = g(u) + e(t, u,u/’u//’u///)’
w(T) —u(0) =/ (T) — v/ (0) = v (T) — u”(0) = v"'(T) — u"'(0) = 0,
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where e : [0, T]xR* — R is a Caratheodory function such that |e(t, z, y, z, w)| < g(¢)
for almost every t € [0,T] and all (z,y,z,w) € R*, with ¢ € L!([0, T], R+).

It is also possible to obtain a variant of Theorem 1 to the case of “singularities”,
assuming that g is defined on a open interval (4, B) C R and replacing the condition
of superlinear growth at +oo with a similar assumption at the singularities, like in
[6]; that is, for some ¢ € (4, B),

lim M= lim M=

+o0,
z— At T —C z—B— T —C

and
T

lim g(s)ds = lim / 9(8)ds = +oo.
z—B~ J.

z— At J.
The fast oscillatory behaviour of large solutions of (P)) suggests the possibility
of investigating the existence of infinitely many periodic solutions in the case of
problem (P) with e = e(t). This problem is completely solved in the affirmative for
the second order equation —u"” = g(u)+e(t), with g satisfying (j), via the Poincaré-
Birkhoff fixed point theorem. Here it seems not obvious how to apply such a
method which provides fixed points for an area — preserving homeomorphism of the
plane. Other tools which have been used to obtain multiplicity of solutions in the
superlinear case, for periodic problems having variational structure, are based on
critical point theory and replace condition (j) with the more restrictive assumption

(&) zg(z) > kG(z) > 0, for [z] >d >0, (k> 2),

(see [2, 9]). It should be interesting to see whether it is possible to apply these
variational methods for problem (1) under condition (j) or (£).

The proof we follow makes strong use, in several steps, of the fact that we are
analyzing the solutions of a fourth order equation, and hence some parts of our
argument would not applv to higher order boundary value problems like

{ (~1)"ul™ = g(u) +e(t),

(Pn) o
u(-) T - periodic.

The problem to extend our result to (P,) with n > 3 remains open. Finally, we
recall that for problems of the form

+u D = g(u) + e(t),
u(-) T - periodic,

the existence of solutions is ensured by a simple sign condition on g which is implied
by (i) (cf. [10]).
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