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MULTIBUMP PERIODIC SOLUTIONS
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VITTORIO COTI ZELATI — PAUL H. RABINOWITZL

Dedicated to Jean Leray

1. Introduction

Several recent papers have used global variational methods to establish the es-
tablish the existence of multibump solutions of families of superquadratic Hamil-
tonian systems. Such solutions are homoclinic solutions of the equations. See
e.g. Séré [10-11], Chang and Liu [3], Bessi [2], Alama and Li [1] and Coti Zelati
and Rabinowitz [4-5]. This paper shows how to modify the methods of [4-5]
to obtain what we call multibump periodic solutions for the setting of [4]. To
describe these solutions, the setting of [4] will be recalled. Thus consider the
second order Hamiltonian system

(HS) G— L(t)g+ Vy(t,q) =0

where L and V satisfy

(L) L is a symmetric n x n matrix, continuous and T-periodic in ¢, and
uniformly positive definite for ¢ € [0, T,
(V1) V € C?(R x R, R) and is T-periodic in ¢,
(V2) Vig(t,0)=0, t € R.
(V3) There is a > 0 such that for all t € R and ¢ € R"™\{0},
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0< uV(t,q) <q-Vy(t,a)
Homoclinic solutions of (HS) were obtained as critical points of the functional

(L1) 1@ = [ (3047 + L)a-0) - V(.0 &

on E = WL2(R,R"). Indeed any critical point ¢ of I on F satisfies (HS) and
g(t), §(t) — 0 as |t| — co. Thus g is homoclinic to 0.
Some further notation is needed. For a,b € IR, let

I"={qeE|I(g)<a}, L={qeE|I(g)2b}
and I¢ = I*NI,. Let K denote the set of critical points of I on E, i.e.
K={geE|I'(q) =0}

Set
K*=KnI% Ky = KNIy Ki=KnlI
and K(a) = KNI Let

(1.2) I ={g€C([0,1],E) | 9(0) =0 and g(1) € I°\{0}}
and
(1.3) ¢= Inf max [ (9(6)),

i.e. ¢ is the mountain pass minimax value associated with I. Note that by (L)
and (V1), the functional I possesses a natural Z symmetry. Namely if j € Z,
g € E, and

(1.4) 7q(t) = q(t — §T),
then
(1.5) I(r;9) = I(q)

for all ¢ € E. Suppose that
(%) there is an @ > 0 such that K°t/Z is finite.

Under the hypotheses (L), (V1)—(V3), and (x), it was shown in [4] that c is
a critical value of I and moreover for each k € N\{1}, KF*® is infinite. This
latter fact is a consequence of a more precise result: there is a finite set A C K(c)
such that for any sufficiently small > 0 and for any k € N\{1}, there is an
¢y = £o(r, k) having the property that whenever £ = (£1,...,4x) € ZF with

£;+1—£i2€o,1_<_i§k—1,then

(1.6) N.(A®)NK #0.
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’UiEA}

N.(S)={z € E||z— 8| <r}.

In (1.6),

Alt) = {in

and

The number £y is such that for v € A, most of the “mass” of v(¢) lies in a
region whose diameter is small compared to o, i.e. v(t) is near 0 for e.g. [¢| >
£o/4. Hence if vy,...,v; € A, the bulk of the mass of Ef=1 Tg,v; lies in &
disjoint intervals and the function has k-“bumps”. Thus for » small, any g €
Br(XF_ 7,u;) NK is a k-bump solution of (HS).

Note that £y above depends on k. In a more refined result in his setting,
Séré [11] obtains (1.6) with £, independent of k& but B, replaced by a larger
neighborhood. See also Bessi [2] for a k-independent 4.

In this paper, the existence of multibump periodic solutions of (HS) will be
obtained. In particular, it will be shown there is a jo € N such that for § € N,
J 2 jo, there is a T, periodic solution g of (HS) which is “near” some element
of A in a sense that will be made precise later. Such a ¢ will be called a 1-bump
periodic solution of (HS). Similarly, there is a jT-periodic solution of (HS) near
A(2) provided that £;43 — £; > £o(r) is appropriately large and j > kéy. Such a
g will be called a k-bump periodic solution of (HS).

There is a classical dynamical systems approach to homoclinics (see e.g. [6])
where if a certain tranversality condition is satisfied, there is a symbolic dynamics
that associates with each bi-infinite sequence of 0’s and 1’s a solution of (HS).
The transversality condition can often be satisfied for perturbation problems
or somewhat more generally when n = 1. In the global variational setting,
it is conjectured that condition (*) or similar hypotheses are weaker than the
classical transversality condition. However, this has only been shown for one
special case by Bessi [2]. In any event, the multibump solutions of [1-5, 10-11]
and the multibump periodic solutions obtained here correspond to subsets of the
symbolic dynamics of solutions obtained classically.

The existence of subharmonic solutions (that is, jT-periodic solutions) for
systems like (HS) has been proved in various settings (see for example [9]). They
differ from the solutions found here in two ways. Our solutions are multi-bumps
and they are bounded in L™ independently of j. In [9], however, the solutions
g0 to zero or to oo as j tends to oo depending on the behavior of V at co.

The existence of 1-bump periodics will be proved in §2 and the general k-
bump case will be treated in §3. Lastly, infinite bump solutions will be obtained
in §4.
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2. One-bump solutions

The existence of 1-bump periodic solutions can be obtained as a special case
of the k-bump result. However, we prefer to prove the 1-bump case first since
it enables us to introduce several of the ideas needed in a considerably simpler
setting and it allows us to be sketchy in parts of the treatment of the k-bump
case. Several results from [4] will be required and the notation of [4] will mainly
be followed.

To begin, for simplicity we take L(t) = id and also set T = 1.

By (*), the critical points of I on E in £** are isolated. Moreover, by (V1),
v € K°+® implies 7;u € K°*© for all j € Z. Therefore if v € K(c) is normalized
to make it unique by requiring e.g. that ||v||z = |v(?)| for some £ € [0,1) and
[v(t)| < ||v||z= for t < 0, there are only finitely many normalized v € K(c). Let
F denote the set of normalized v € IC(c¢) and set

Te(F) = {Xj:'rkivi

i=1

1<t v €F, k,'EZ}.

Then (see e.g. Proposition 1.55 of [4])
w(Te(F)) = inf{llz —yll | = # y € Te(F)}

is positive. It was also shown in [4] that there is a ¢ > 0 such that I(q) > ¢
for all g € K\{0}. Let € be the largest integer not exceeding (c + a)c™! and set
p = pg(F).

The fact that points in K+ are isolated leads to a uniform lower bound on
[[I']| in associated annular regions that is crucial for what follows. In the sequel,
even if not explicitly stated, it is always assumed that (L), (V1)-(V3), and (%)
hold.

PROPOSITION 2.1. Let 0 < s < 7 < 5. Then there is a § = §(r,s) > 0
such that

(2.2) I7'(@)]| > 46

for
T e Nsr(,C(c))\Ns/32(’C(c))'

PROOF. Since ||I'(2)|| = ||I'(7;2)]| for all j € Z, it suffices to prove (2.2) for
all z € Bs,(v)\Bs/32(v) for all normalized v € K(c). If (2.2) fails, then for some
such v, there is a sequence (2m) C Bg,(v)\Bs/32(v) such that

(2:3) I'(zm) — 0.
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Moreover,
1 d
(2.4) I(zm) = c+ f o T(0 + 0z —v)) d8
0

=c+ /01 I'(v+ 0(zm — v))(2m — v) df.

The form of I' shows that it is bounded on bounded sets. Consequently, (z,,) is
a Palais-Smale sequence, i.e. I(zy) is bounded and (2.3) holds. By Proposition
1.24 of [4], there are j € N, wy,...,w; € K and (ki) CZ,1<i < 4, such that
as m — o0, along a subsequence of z,,,

J
(2.5) Zm — ZTk;wi" —0,
i=1
(2.6) |ki, —kE| — 00  ifi#p
and
J
(2.7) Z I{w;) =c.

i=1
By (2.5), (2.7) and the fact that I(w) > 0 for w € K(c)\{0} (see [4]) 2, — TH(F).
But this is impossible since (2m) C Bg-(v)\Bj/a2(v).
To continue, let

(2.8) a1 =sup{f < a | K15 = K(c)}.

Then a; > 0 by (*). The following result from [4] provides us with the set A
mentioned in the introduction and which is needed to formulate the existence
theorems here.

PROPOSITION 2.9. There is a finite set A C K(c) with the property that
whenever €1 € (0,a1), 71 € (0,1/12), and p € N, then there is a constant
€1 € (0,81) and g1 € T satisfying

1° maxgeio,1)91(f) < c+e1/p and
2° I(91(9)) > ¢ — 2¢, implies g;(8) € N,,/16(A).

Now let r < 42/24, set s = r and take § = §(r, r) as given by Proposition 2.1.
Then for each v € A, a v* € E can be chosen such that »* has compact support
and

(2.10) lv—v*|| < r/32.
Let A* = {v* | v € A}. By Proposition 2.1 and (2.10),
(2.11) II'(z)|| 248, =€ Nepn(A*)\N,/16(A%).
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By Proposition 2.9 with
(2.12) %1 = min(a1/2,76, (r),2,¢/2),

r1 = r, and p = 8, there exist ¢ € (0,1) and g1 € T satisfying 1°-2° of the
proposition. Then g € T' can be chosen so that g has compact support (uniformly
in 6 € [0,1]) and satisfies

(2.13) erél[%ﬁ] I(g(6)) < c+e/4
and
(2.14) I(g(8)) > c—¢ implies g(6) € N,s5(A).

Consequently, by (2.10),
(2.15) I(g(8)) > c—¢ implies g(0) € N,/4(A%).

Since the functions v* € A* all have compact support as do g(8), 6 € [0, 1],
there is an R € N such that

(2.16) supp v",supp g(f) C [-R, E]

for all v* € A* and @ € [0, 1]. Note that R = R(r).
Let 7 € N and define

(2.17) E; = {g € WH*([—j, ],R™) | ¢ is 2j-periodic in t}.

Then F; is a Hilbert space under the associated norm

j
gl = [ (1dt* +lql) dt.
=7

Note that if j > R, then v*|_; ; extends in a natural way to an element of E;
which will be denoted by . Define A = {% | v* € A*}. Let

K@= [t

where
L(g) = 3(141* +1a*) = V(t,9).
Any critical point of I; in Ej is a 2j-periodic solution of (HS). Let K; denote
the set of critical points of I; on E;. Let Bi(z) denote an open ball of radius r
in E; about z and N7(S) the analogue of N,(S) for E;.
Now the basic existence theorem for 1-bump periodic solutions of (HS) can
be stated.
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THEOREM 2.18. Let (L), (V1)~(V3), and (*) hold. Then for r sufficiently
small, there is a jo(r) > R such that for each j € N with j > jo,
Ni(A)NK; £ 0.
The idea of the proof of Theorem 2.18 is the following. Suppose
(2.19) Ni(ANK; =0.

Consider g € I obtained earlier satisfying (2.13)—(2.14). Since supp g C [-R, R],
g extends naturally to g € C([0, 1], E;) and by (2.13),

(2:20) o 1;(3(60)) = max. 1(o(0)) < c +¢/4.

Using (2.19) and Proposition 2.1, § will be deformed to 7 € C([0, 1], E;) such
that

(2.21) 17(6) —g(O)l; < 2r
for all 6 € [0, 1] and

. <c-—
(2.22) Jmax Ii(0) < c—e/2.

Using (2.21), % will be approximated by a nearby h € C([0, 1], E;) such that %
vanishes near [f| = j and

5 <c-—
(2.23) erél[gai]l (h(G)) c—efd.
Thus defining

R(O)(), It <3,
o = {FOO 123
0, It > 4,
produces h € I' satisfying
(2.24) max I(h(0)) < ¢ —e/4.

6€[0,1]

But (2.24) contradicts to (1.3).
To carry out the details of this sketch, first the behavior of I; in N/ (Z) will

be studied.

PROPOSITION 2.25. There is a jo(r) > R such that whenever j > jo and
zeN (A)\NJ o(A), there ezists a p(x) € E; with le(z))l; =1 and

(2.26) L(@)e(a) > 26(r)
where 6(r) = é(r,r) is given by Proposition 2.1.

PROOF. Let @ € A and ¢ € Ej and 7/8 < ||{]l; < 7. Set jo(r) = bo(r) =
7(r) + R where ¥(r) € N and is free for now. Since E; consists of 2j-periodic
functions, we can identify ¢t = j with ¢ = —j. Then, by the definition of R, @
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vanishes on an interval S; of length 2+. Therefore there is an interval S C S; of
length 2 such that

(2.27) I¢lwaacs) < my 22,

Let
M; = max||v|| + 1.
vEA

Then 7 can be chosen so that

(2.28) My > max ||7] g + 1.
veA

Set

(229) M= mas |Valhe)

where |Vg,| denotes the sum of the components of V. Choose 7(r) so large that
if Z € E; is defined via

¢@t), t€s,
(2.30) Zt) =40, t in a unit interval about the center of S,
linearly interpolated otherwise,
then
(281) 16~ 25 < gy
’ T+ M)
It can be assumed that é satisfies
é g
. _— < —.
(2:32) 0+ =16
Therefore
r Py = ~ 3r
(2.33) 16 S el =16 = 2lly < 1125 < NSl + IS =21l < -
Moreover, if p € E; and ||@]|; < 1, then
(2.34) I;(@ + )7 — Ij(@ + Z)p] < || — 2]l

+ ]/(Vq(t,mo—Vq(t,mz))-w
S

~ )
<E+MC-3l; < 5.

Suppose j € S. Then defining z(t) = Z(t) for ¢t € [—j, j], and 2(t) = 0 for || > j,
gives

(2.35) L@ +2)p=I(w+2)p.
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Since w = w* € A* and ||2|| = ||Z]|;, it follows from (2.33) and (2.11) that there
is a ¢ € F such that

I'(w+ 2)@ > 46.
Since w+ 2 has compact support in [—£g, £g], it is possible to find @ with supp % C
[_30,20]1 ”§5I| = 1) and
(2-36) I'(w + 2)p > 36.
Redefining & outside [—£o,%o] to get a 2j-periodic function ¢ with ||¢||; = 1,
(2.36) yields
(2.37) I (B +2)p > 36.

Combining (2.37) and (2.34) gives (2.26) and Proposition 2.25. If j ¢ S, replacing

¢ by T_gp for an appropriate k reduces the problem to the case just treated.
With the aid of Proposition 2.25 and (2.19) a locally Lipschitz continuous

function V on E; can be constructed so that ||V(z)||; < 1 for all z € Ej,

(2.38) L@)V(z) 225, =€ Nu(A\N4(A),
and for some §; > 0,
(2.39) I(z)V(z) > 8;.

Indeed, by (2.19) for each = € N,,/g(;l\), there is a ¢(z) such that ||p(z)||; < 1
and

(2.40) L@@ 2 L@ > 0.
Let

2.41 6; = inof Ii(z)]| .
(2.41) 1= e ) 17; ()l

Then §; > 0 for otherwise there are @ € A and (zm) C Bi /8(®) such that
(% + 2m) — 0. But I; satisfies the Palais-Smale condition (see e.g. [8]) and
therefore z, — z € ﬁf. /8(@) such that I} (@ + z) = 0, contrary to (2.19).

Now by a standard argument (see e.g. [8] or Proposition 3.50) the function
V can be constructed on N-.(A) from the vectors (z) and in fact V can easily
be extended to satisfy ||V(z)|; < 1 all of E;.

Set

llz — ()< 1l

e = (@)==<l; + lle = ()23l

where (I;)°, (I;)2 have the obvious meaning. Then f is locally Lipschitz contin-

(2.42) flz) =

uous on E;. Finally, set

(2.43) W(z) = f(z)V(),
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a bounded locally Lipschitz continuous function on Ej;. Consider the ordinary
differential equation
dn

(2.44) 75 = V)
on E;, with the initial conditions
(2.45) 7(0,z) =z

for z = g(#). Since W is bounded, a solution of (2.44)—(2.45) exists for all s € R.
By (2.20),

(2.46) Ii(z) <c+e/4.
If I;(z) < c—e/2,set o(z) = 0. If
(2.47) Li(z) >c—¢g/2,

since I;(z) = I(z), by (2.15), z € NZ/4(E). The behavior of the orbit 7(s, z)
will be analyzed. Suppose 7(s, z) leaves N7(A). Then there are numbers 0 <
81 < 89 such that 7(s, z) € Ni(g)\Ng/‘l(A\) for s € [s1, 82], (s1,2) € 8N£/4(2),

n(s2,z) € ONI(A) and
S2
[ g
s, dS j

3r
ds< [ fats,2) IV ats, )] ds

(2.48) 7 S lIn(sz,2) —n(sr, )5 =

82
< /
81

82
< [ fnto, ) as
s1
since ||V||; £ 1. Note that

(2.49) d%fj(n(s,z)) = —f(n(s, 2))I;(n(s, ))V(n(s,z)) < 0

for z € [0,s2], i.e. I;j(n(s,z)) is a nonincreasing function for this s interval.
Therefore by (2.49) and the form of (2.44),

dn

ds

(250) Je > Lin(s1, ) ~ Ij(n(s2,9)

" AL M(s,2) 4 / " Ln(s, ) Fn(o, ) Vin(s, ) ds

82 d's 81

> 26 /82 f(n(s,x)) ds.

Combining (2.48) and (2.50) yields
(2.51) € 2 26w,
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contrary to (2.12). Hence 7(s, %) remains in N7 (E) for all s > 0. Consequently
there is a unique s = o(z) > 0 such that I;(n(c(z),z)) = c — &/2 for otherwise,

(2.52) Ii(n(s,z)) >c—¢/2
for all s > 0. Then by (2.42), f(n(s,)) = 1 and as in (2.50), for any s > 0,
(2.53) c+e/2—-1Ii(n(s,z)) = / 8;ds = s6;.

0

Choosing s = 6; ! gives
(2.54) ct+e/2-12Li(n(6;"x)) >c—e/2

which is impossible. Thus for each 8 € [0, 1], there is a unique s = o(§(8)) such
that

(2.55) I;(n(c(9()),9(6)) < c — /2.

It is easily seen that o(g(6)) is continuous in 6. Moreover, since we have 7(6) =
n(c(5(0)), 5(6)) € Ni(4),

(2.56) 17(6) — g@)l; < 2r.

It remains to use (2.55)—(2.56) to pass from 7 to an approximation A and cor-
responding h € I' and obtain the contradiction (2.24). A comparison argument
from [4] will be employed to construct . Observe first that

(2.57) - 7(0) = n(c(5(0)),§(0)) = n(c(0),0) = 0

since 1;(g(0)) = I(0) = 0 < c—¢/2 (via (2.12)). Similarly, I;(§(1)) = I(g(1) <0
so ¢(g(1)) = 0 and

(2.58) (1) = g(1).

By the properties of § and (2.56), there is an interval Y in [—j, j] (with end
points identified) of length at least 2y such that for all 6 € [0, 1],

(2.59) 7Ol wr2qvy < 2r.
For each 0 € [0, 1], let
(2.60) Ep={z € WH3(Y,R") | z|oy = 7(0)|sy and #llwacy < 8r}.

For z € Eg, define
(2.61) U(z) =/ L(z)dt.
Y

By Proposition 5.7 of [5] or Proposition 4.26 of [4], for r sufficiently small, there
is a unique Ty € Fy such that

(2.62) (@)= inf U(a)
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Moreover, Ty depends continuously on 8.
For each 0 € [0, 1], set

_ [Be(t), teY
(2.63) Us(t) = {ﬁze)(t), te[—5,i\Y

Then Us € E; for all 6 € [0,1] and by (2.62) and (2.55),
(2.64) 1(Us) < L;(7(6) < c—¢/2.
By (2.57)-(2.58) and the construction of Uy,

(2.65) Up=0 and U;=g(1).

Let W be the solution of the boundary value problem

(2.66) ZWE—%W+2W=O, tey,
W=a= GE[OI,III]E,DtcEBY |Up (2)].

It was shown in [4] that

(2.67) [Ze(t)2 < W(t), teY.

Indeed, W can be written down explicitly and is exponentially small near the
center of Y. Eg. if Y = [—4,7 + 7] U [§ — v,J], then

(2.68) |Ba (7 + )] < V2a eV21-7)/2
for |s| € 1. Define he € E; by

- Us(t), [tl<i—,
2.69 he(t) =
(2.69) o(®) {0, It -3l [t + 4] < 1/2,

and linearly interpolated for 1/2 < |t —j|, [t +j| < 1.
Thus for v sufficiently large (see e.g. [4])

-~ ~
. ; <ec— .
(2.70) orél[%,)i] Ii(he) <c—ef4

Associated with hyg is h(6) € C([0,1] x E, E) with h € T via (2.65). Moreover,
(2.711) I;(he) = I(h(8)) < c —&/4.

Thus (2.24) has been verified. If Y is not the above interval, a simple translation
argument yields the same conclusion and Theorem 2.18 is proved.
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3. Multibump periodic solutions

The existence of multibump periodic solutions of (HS) will be established in
this section. This case has several ideas in common with §2 but there are also
new features and considerable technical complication. Some preliminaries are
needed before the main results can be stated.

For k e N\{1}, 1<i <k, 0 €[0,1]*, and ¢ € {0,1}, let

(3.1) Qi = (01,...,gi_l,(p,ei,,_l,...,ok).

A family of maps, I'y, related to T' and which play an important part in the
existence proof is defined as follows:

(3.2) Ty = {G = igz- , gi satisfies (gl)—(gs)}

i=1
where for 1 <i <k,
(gl) g9: € C([O: 1]k1 E)7
(82) 9i(0:) =0, gi(1;) € Io\{0}7
(g3) there are real numbers p; < ... < pg_; independent of § € [0,1]* such
that if pg = —oco and p; = oo, then

supp 9i(9) C (Pi-1,D:)-

In (g3), supp f denotes the support of f (as an element of E).
Associated with each set Ty is a minimax value (bz) defined via

(3.3) by = Glggk oél[itfﬁk I(G(9)).

It was shown in [4] that b = kc. This fact is not needed here but the key step
in its proof is essential for our existence argument. A new and simpler proof of
this step will be given next.

PROPOSITION 3.4. Let g; satisfy (g1)—(g2), 1 € ¢ < k. Then there is a
g clo, 1]* such that I(g:(6)) > ¢, 1<i<k.

PROOF. Let Fjo denote the face of [0,1] containing (0;) and Fj; the face
containing 1;. If vy is a curve joining Fiy to Fj;, then by (g2), gi() € T. Therefore
by the definition of c,

(3.5) ¢ € I(g:(~([0, 1]))).

Since this is true for any such v, (I(g;))~*(c) separates Fyy and F}; (in [0, 1J%).
Let € > 0 and set

Ai={0€[0,1)% | I(g:(8)) > c—¢€}.
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Then for any § = §(¢) sufficiently small, A; contains a uniform, § neighborhood
of (I(g:))~*(c). Since [0, 1]* is compact, this neighborhood contains only a finite
number of components. The same is true for B; = [0, 1]¥\A4;. Since A; separates
"Fyp and Fj;, there is a component C; of B; containing F;1 but not Fyp.

Define

60— A4, 6€l0,1\C;,
. A(6) =
(3.6) 7i(6) {—|0—Ai[, 6eCh

Then o; € C([0,1]%,[-1,1]), 1 < i < k,

(37) 0’1'(01') >0, 0',;(11;) <0,
and
(3.8) 0;(§)=0 ifandonlyif I(g:(f))=>c—e.

We claim there is a 0. € [0,1]* such that
(3.9) I(gi(:) 2c—e, 1<i<k

By (3.8), this is equivalent to finding a zero for o(6) = (01(8),. .., ox(6)). Con-
sider the Brouwer degree of o with respect to (0,1)¥ and 0. Denote it by
d(o, (0,1)*,0). By (3.7), the degree is defined. If it is nonzero, then there exists
6. as desired. To verify this, consider the homotopy

h(\6) = (L— No(0) + An(8), Are(o,1],

where 7(8) = (m1(8), ..., nx(9)) and n;(#) = —26; + 1. If h(A,0) = O for some
A €[0,1] and 8 € 8(0,1)%, then 6 = 0; or 1; for some 3. If & = 0;, then by (3.7),

(3.10) 0=(1—XNos(0;) + A(—-2-0+1) >0,
while if # = 1;, than again by (3.7),
(3.11) 0=(1-Nos(L) +A(-2-1+1) <0.

Consequently, h(}, 8) # 0 for A € [0,1] and 8 € (0, 1)*. Hence by the properties
of degree,

(3'12) d(o, (0, l)k’o) = d(n, (01 l)k:O) = (_l)k # 0.

Thus there is a 9, satisfying (3.9). Letting ¢ — 0 then yields Proposition 3.4.

Another proof of Proposition 3.4 can be given using a theorem of Miranda
[6]. In [4], the fact that by = kc was used together with a construction to show
that for each k € N and r sufficiently small, there is an £y = £o(r, k) such that if
2= (£y,...,0) € ZF with £;41 — £y > £o and A(¢) is as in §1, then

N.(A()) N K #0.
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In other words, near the collection of sums of translates associated with ¢ of
members of A, there is an actual solution of (HS) provided that ¢, is sufficiently
large. The main result here is that a similar theorem prevails with A replaced
by A and K by K;. In fact, by working with a different norm as in Séré [11],
£y can be chosen to be independent of k. This observation can also be used to
improve the results of [4].

To state our results more precisely, a more careful choice of parameters and
sets must be made than in §2. Let 0 < r < /24 and s = r in Proposition 2.1.
Then with A as in §2, there is a § = §(r) > 0 such that

(3.14) [7'(2)l| > 46, = € Nar(A)\N;/32(A).
Let
(3.15) 0 < &1 < min(ré(r)/24,r,1).

Choose p = p(r) < 1 so that

(3.16) 0<p<er/32
and
(3.17) I(z) < c+¢e1/32, x € Ny, (A).

For each v € A, choose v* € E having compact support and such that
(3.18) v —v*|l < p/2.

Therefore by (3.14) and (3.18),

(3.19) |7 ()| > 48, T € Nop(A*)\N,/16(4%),

where A* = {v* | v € A}. Choose g € I" with compact support such that (2.13)
and (2.15) hold, i.e.

(3.20) omax I(g(8)) = [max I;(g(8)) <c+e/4
and
(3.21) I(g(9)) > c—¢ implies g(#) € N, 4(A%).

In (3.20)-(3.21), € € (0,£;) is given by Proposition 2.9 where & = min(e;,%;)
and £; was defined in (2.12). Finally, choose R so that

(3.22) supp A*,supp g(¢) C [-R, R).
Now let £ € ZF with

(3.23) bivi ~4i > Lo =2(R+7),
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where v = 7(r) will be chosen to satisfy several conditions later. Choose j >
Jo = €x — €1 4+ £y > kfy. Then for any choice of v7,...,v; € A* we have

(3.24) supp 7e,v; C [mi—1+v,mi—7], 1<i<k,

where mg = £1 — R — v(R), my = £y + R+ y(R), and m; = (¢; + £i11)/2,
1 <4< k—1. After a change of variables, it can be assumed that mg = 0
and my = 2j. As in §2, to each v* € A*, there corresponds a ¥ € E; such that
v*|j=j ;] = . Let A= {7 | v* € A*}.

The space E; will be renormed via

(3.25) Izl; = max flzllw2m, -y, mize)-

The norm depends on £ which is fixed for what follows. A ball of radius r about
z under || - ||; will be denoted by B,(z). For § C Ej, set N;(S) = {z € E; |
lz—Sll; <r}. Let

'17,- GZ}

. k
A(l) = {Z 70,0
i=1

Now our main result can be stated.

THEOREM 3.26. Let (L), (V1)—(Vs), and (x} hold. Then for any r suffi-
ciently small, there is an £y(r) such that for any k € N and £ = (¢y,...,4;) € ZF
with Z'i+1 - éi Z fo('f') and _7 Z jo('l‘) = ek - £1 + eo 2 kfo(’r‘),

(3.27) A; = No(AD))N K, £ 0.

In brief, the strategy of the proof of Theorem 3.26 is similar to that of

Theorem 2.18. If A; =0, a G € T’y will be chosen so that
2 I(G(8)) = LG@O) <k

(3.28) o2, (G(9)) peia 1(G(0)) < k(c+e)
for £ as in (3.20)—(3.21). After a deformation and modification process in the
spirit of §2 but more complicated, H = Zle h; € Ty, will be constructed from
G such that
3.29 I(hi(0) <c—e/4,
(3.29) oggﬁk(z())_c e/
for some 4. But (3.29) contradicts Proposition 3.4.

To carry out the details of this argument, we begin with a refinement of
Proposition 2.1.

PrROPOSITION 3.30. Let 0 < r < &5 and p(r) satisfy (3.16)—(3.17). Then
there are § = 8(r) > 0 and vy = ¥(r) > 0 such that whenever k € N, £ =
(b1, ..., 8) € Z*, by —£; > Lo(r) = 2(7(r) + R), and = € N4 (A(0))\W,(A(£)),
there ezists o, € E; with ||pz]; =1 and
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PROOF. Suppose first that = = 3" 7,%; + z where 2 € B,,.(0)\B, 74(0). Set
% = 2Z|[m;_,,m;]- Then

(3:31) ”zi”Wl-z[m-;—hmi] < 4r, 1<i<k,
and for some p in [1, k],

(3.32) ”Zp”WLz[m,,_l,m,,] > 7‘/4.

By (3.31), there is a unit interval U C [m; — 7, m;] with integer endpoints such
that

(3.33) lzillwr2@y < dry~1/2,

Similarly, there is a unit interval U;” C [m;—1,m;—1 + 7] such that
(3.34) lzillyra -y < 4ry~V2,

Choosing i = p, let 2*(t) be a function such that

(0, t € center half of U, ;, U¥, U, ,,
0, t to the left of the center half of U;'_ 1
" and to the right of the center half of U ,,
(3.35) Z*(t) = J z(t), tbetween U} ; and U, ,
U, and U, U} and o1
linear combination of 0 and 2 in the
| remaining subintervals of U;,"__l, U;,t, and Up,,.

Note that in any of the intervals U = U, etc.,
(3.36) Iz = 2*lwiz@) < 8ry~1/2,

Let ¢(t) have support in the interval X, bounded on the left by U) ; and
on the right by U,,, and suppose [¢||; = 1. Then since z and z* differ on X,
only on the U intervals,

k
(3.37) I (Z e, Vr + z) o = Ii(1e,v5 + 2)p

i=1

= Ij(re, v} + 2*)p + (I} (g, 05 + 2) — I} (g, 0% + 2*))o

> Ij(Te, vy + 2*)p — 6/2
provided that v is sufficiently large. Moreover, again for -y sufficiently large,

(3.38) 8r > ”2;“W1,2[mp__1’mp] >r/8.
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Now two cases are considered. Suppose Y}, is the interval bounded by U, on
the left and U on the right and

(339) ”z;llwl,z(yp) > ‘T'/16
Define Z, € E; via
zi(t), tey,
Zp(ty=4 7 P
ot {0, t € [, ]\Yp-
Considering Z, and 7¢,v; extended by zero outside Y, as elements of E, by
Proposition 2.1, there is a ¢ € E with support in ¥, and ||| = 1 such that

(3.40) L(re,vp + 2*)p = I'(Te, vy + Zp)p > 46(r).
Next suppose that

(3.41) l|zpllw2(x,) < 7/16.

Then

(3.42) 25 — Zpllwr.2pmy,—y1,m,) = 7/16.

Take ¢ = B~ 1(2* — Z,) where J is free for the moment. Note that supp ¢ C
X,\Yp and

(3.43) Li(me,v5 + 2")p = / Y(ﬂ_l(lz'*lz +2°%) = Volt, 2%) - o) dt.

P

On X,\Y,, for r sufficiently small,

* 1 *
(3.44) Vit 2% < 7512°)
Therefore
-1
(345) Ii(mg,vp +2")p 2 / (ﬂ_l(li"l2 +2*%) - —IZ*I2> dt
»\Yp 10

9 — * 9 — *
2 107 Hz* e x,\y,) = 1oP HIz* = Zpllfrex,)

9 1 9 ./ 7\°
Z 708 Y2* = Zolliyszmy_ymy)) = 10? I(E) :
Choose  so that ||¢||; = 1. Since
(3.46) = <z = Z; < 8,
16
this gives k-independent bounds for 8. Now since it can be assumed that 6 is
small compared to r, (3.45)—(3.46) show

(3.47) L (7, vp + 2" )p > 48(r).

Combining (3.40) and (3.47) and taking ¢ = ¢, gives the lower bound for
I; (z)ps for these cases and above choices of ¢,. If z = 3 7p,v; + 2 with
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z € B,/4(0)\B,(0), arguing exactly as above with y(r) still larger and § =
6(r, p(r)) from Proposition 2.1 gives the desired lower bound. Finally, taking
6(r) = min(é(r), 8(r, p(r))) yields Proposition 3.30.

REMARK 3.48. The above construction yields ¢ such that ||¢4|; = ¢z I, =
1. If there are several values of p such that (3.32) holds, a more refined choice
of ¢, is needed. Namely, take ¢, to be the sum of the corresponding ., as
obtained above. Then by (3.25) and the way in which the supports of the P,
are situated,

(3-49) lie=ll; < 3.

The next result pieces together the vectors ¢, to form a vector field on E;
which will be used as in §2 for the deformation process.

ProPOSITION 3.50. If A; = 0, there ezists a locally Lipschitz continuous
function V(z) or E; and §;(r) < 26(r) such that

(3.51) V), <3, forallz € E;,

(3.52) L(@)V(z) 226(r), € N.(A0)\N,/4(A8)),
(3.53) L(@)V(z) 2 28(r), € N u(AE)\W,(A@®)),
(3.54) L(z)V(z) > 6;(r) >0, = eN,(A¥)).

Moreover, if

(3.55) Bi(z) = / ™ Lwyat,  1<i<k

'm,~—1

andr=y+ 2z withy € .Z(Z) then

(3.56) ®(2)V(z) 2 26(r), /4 < |zillwrrpm,_ymg ST
and
(3.57) u@)V(@) 2 28(), < [allwragmesmg < /4.

PROOF. There is a standard argument to construct V(z) from ¢,. It involves
taking convex combinations of the vectors ¢, and using appropriate cut-off func-
tions. See e.g. [7, Lemma A-2]. Thus (3.49) leads to (3.51), (3.47) to (3.52), and
likewise going from 6(r) to §(r) yields (3.53). Property (3.54) follows as in (2.41)
since [; satisfies the Palais-Smale condition. To obtain (3.56)—(3.57), note that
they hold with V(z) replaced by ¢, and hence for V since V is obtained as a
convex combination of y,’s (see [§]). Finally, note that without loss of generality
§; < 26.
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To continue, set

k
(3.58) GO) = 72,9(6:)

i=1
where g € T satisfying (3.20)-(3.21) was obtained from Proposition 2.9. Then
G €T and its periodic extension G satisfies

(3.59) I;(G(8)) = I(G(6)) < k(c+e/4).

The function G will be deformed and modified to obtain H € I satisfying (3.29)
as indicated earlier. To do so, a flow will be employed. Let &; satisfy (3.15).
Define locally Lipschitz continuous functions as follows: For 1 <i <k,

=0 if @ji(ﬂ?) 2 C+261,
(3.60) '(ﬁ,(:l}) { =1 if @j,’(ﬂ?) <c+ey,
€ (0, 1) if ‘I>j,-(:1:) [S (C +ée1,¢+ 261),
=0 if <I>ﬁ(x) S Cc— 26,
(3.61) xi () { =1 if ®;:(z) > c—c¢,
€ (0,1) if ®;:(z) € (c—2e,c—¢).
Set
5 -
(3.62) ¥(z) = [ ¢il2)
i=1
and
k
(3.63) x(z) = [ [ x(=)-

=1
Consider the ordinary differential equation

(3.64) Z—Z = —y(n)x(m)V(n)

in F;, with the initial condition
(3.65) 7(0,z) = .

We are only interested in z = G(6) for 8 € [0,1]%. Since the right hand side of
(3.64) is bounded, 7(s, z) exists for all s € R.

Asin §2, set o(z) = 0if ®;i(z) < c—¢/2 for some ¢ with 1 < ¢ < k. Otherwise
choose o(z) to be the smallest positive value of s such that ®;;(n(s,z)) = c—¢/2
for some 4. That such a o(z) exists and is continuous in # is a consequence of

the arguments that follow.
Thus consider any z = G(f) such that for each ¢ with 1 < ¢ <k,

(3.66) Cc— 6/2 < @ji(z).
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Since for 1 <3<k,

(3.67) ®;i(x) = I(1e,9(0:)) = I(g(0:)) < c+e/4,
by (3.66)—(3.67) and (3.20)—(3.21) we have

(3.68) 9(6;) € N, ja(A*).

Therefore

(3.69) z = G(8) € N,.;4(A(£))

and z € B, /4(y) for some y € ﬁ(ﬂ). Suppose that (s, ) crosses from B, /a(¥)
to 8B,/2(y). Then for some s3 > 51 > 0, n(s,x) € Er/g(y)\Br/4(y) for all
s € [s1, 53] and for some p,
(3.70) ”77(31, .’L‘) - y”WI’z[mp—I,mp] = 1‘/4

< ”"7(3, f’f') - y”Wl:?[m,,_l,m,,] < ||77(82,$) - y||W1.z[mp_1,mP] =r/2
Hence
(3'71) 1‘/4 < ”77(32’ :l:) - y”Wlx"’[mp_hm,,] - ”n(sl’w) - y“W‘l’[mp_l,m,,]

< ”"7(827'7") - ﬂ(sl,w)llwl-ﬂ[m,_l,m,,]

S2 dﬂ
L E ds

1

W3 [mp_1,mp]

</ " 5 (s, 2)x((5 ) V5, )l w230, s g d

<3 [ winte,2xtate, =) s,
the last inequality following from (3.51). On the other hand, by (3.56),
(3.72) ®jp(n(s1,2)) — Rjp(n(s2, 7))
~ [ fasnisz)ds = [ @ylas,2) 3L ds
sy 08 P ds

82

-/ ” w(n(s, 2))x(n(s 7)) & (n(5, 2))V(n(s, 2)) ds
> 26(0) | * w(n(s, 2)x(n(s, 2)) ds.

Combining (3.71)-(3.72) and (3.15) shows

(3.73) ®5p(n(s1,2)) — ;p(n(52,)) > e .

But the form of the equation (3.64), in particular the choice of the cut-off func-
tions 1 and x implies ®;,(n(s, z)) € (c—2¢, c+2¢;1). Hence (3.73) is not possible
and for s > 0, 5(s, z) € B,/2(y)-
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Let
(3.74) - T = 2ke6; "

We claim that for each z satisfying (3.66), there is some ¢ with 1 < ¢ < k and
s € (0, T}) such that

(3.75) ®,;(n(s,z)) =c—€/2
Otherwise for all s € (0,7;] and 1 <i <k,

(3.76) ®;(n(s,z)) >c—e/2.
Consequently,

(3.77) x(n(s,z)) =1

and

(3.78) Ii(n(s,z)) > k(c—€¢/2)

for s € (0,7}]. By (3.77),
619 Ln(ee) = L)+ [ GHa(e)ds

5@ - [ (s, 2)) I (s, 2))V(n(s, ) ds.

Since (s, z) € B,(y), by Proposition 3.50,

T
(3.80) L) - LT, 0) 26 [ vln(s,) ds.
Hence by (3.78) and (3.59),
(3.81) Ske = k(c+e/4) — k(c—e/2) > & i ¢(n(s,z)) ds.

It remains to analyze ¥(n(s,z)). When s = 0, n(s,z) = z satisfying (3.67).
Therefore 1;(z) = 1 for 1 < ¢ < k. By its definition, ¥;(n(s,z)) = 1 whenever
®,i(n(s,z)) < ¢+ e1/2. Thus suppose there is a smallest 5 € (0,7}] such that

(3.82) ®,i(n(s,z)) = c+_61/2

for some i. Let 1;(3, ) = n(3, Z)|[mp1,mi] = Te:,95 + 2. If

(3.83) p < zillwzim_y,myg <7

then by Proposition 3.50,

(3.84) 2516 2) . _af(n(s, ) vin(s, ) <0,

i.e. ®;(n(3,z)) is decreasing at 3, contrary to the choice of 5. Hence

(3.85) llzillw2ms s ma) < P
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Define a function ¢ € F via

0, t & [mi_1,my],
¢ty =4 %), temig+1,m;—1],

convex combination of 0 and z;
in the remaining intervals.

Then (||| < 3p and
(3.86) @54 (7e:v7 + €) — 25:(n(3, 2))| < 3p° < 3p.

Therefore by (3.82), (3.86), and (3.16),

(387) @ji(Tgi’U;;k + C) >c+ 61/4.
But
(3.88) Dji(me,vi + Q) = I(mg,0] + ¢) = I(vj + 7-4,()

and by (3.16) and (3.18), v} + 7_¢,¢ € Ny,(A). Hence by (3.17),
(3.89) I(v] +71_¢,¢) < c+£1/32,

contrary to (3.87)—(3.88). Thus there is no 3 satisfying (3.82) and Yi(n(s,z)) =1
for all s € [0,7}]. Now by (3.81),

(3.90) 3ke > T;6;.

But (3.90) violates (3.74).
Thus we have shown that for each 6 € [0,1]*, there is a unique a(G(@)) €
[0, T;] such that for some i with 1 < i < k,

(3.91) 25i(n(a(G(0)), G(9)) < c —¢/2.

As in [4], 0(G(0)) is continuous in 6.

Next, by modifying n(c(G(9)), G(8)) = 7(6), an h € T'; will be obtained
satisfying (3.29) and thereby completing the proof of Theorem 3.26. The modi-
fication procedure is similar to that of §2 and [4] so we will be brief.

Note that by construction,

(3.92) I76) -GN, <r
and G(8)(t) = 0 for t € [m; — v, m; + 7], 1 <4 < k. Therefore
(3.93) 17Ol temey e < 2

for 1 <z < k. Define Y = [mi—1,mi1 + 7] and

(3.94) W@:A}@m
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for = € E; (6) where
B (0) = {o € WR(Y) | 2loy- = 10)loy- 20d lallyascymy <87}

Similarly, define Y;* = [m; — v,m;] and
(3.95) UH(z) = f L(z)dt
Y;+

for z € B} (8) where

EF(0) = {z e WA(YT) | z|gy+ = M(6)lsy;+ and zhwzevty < 8}
By Proposition 4.26 of [4], for r sufficiently small there is a unique 7 (8) mini-
mizing ¥ over Ef:(G) for 1 < i < k. Define Up(t) € C([0,1]*, E;) via

z; (0)(t), teY ,1<i<k,
U(t) = { aF (O)(t), teYV;F,1<i<k

(3.96)
’ 7(0)(t) otherwise.

By the construction of the functions zE(9),
(3.97) ®;i(Us) < 2;(7(9)), 1<iZk
In particular, for each 8 € [0, 1]* there is an 4(6) such that

(3.98) q’ji(g) (Us) <c—g/2

The comparison argument indicated in §2 (see also [4]) shows z;(0)(t) — 0 in
C! like e=V7 as ¥ — +oo for ¢ in the unit interval S; centered about m;_1+7/2.
The same is true for ;7 in S; centered about m; — /2. Therefore Up can be
modified in Sf for 1 < i < k to obtain a function W (@) such that W vanishes
near the center of Sf for 1 < i < k and satisfies

(399) QJZ(W(G)) < jS(Ug) + 6/4.
In particular,
(3.100) ®i0)(W(0)) < c—¢/4.

Finally, note that in the interval X; between the centers of Sj’ and S;,;, by
(3.93), the W12 norms of 7(6), Us, and W(f) over X; are all bounded by ai7
where @, is independent of r. Hence for r sufficiently small,

(3.101) /X Lw(e))de > : fx (WO +WEOP)dt.

Set
k
HEO)®) = {ZV(e)(t), 2 X
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Then

(3.102) ®;i(H(0)) <2;(W(0)), 1=Zi<k,
and in particular,

(3.103) B;i0)(W(0)) L c—e/4

As in §2, H can be identified with an element of C([0,1]%, E) satisfying (g;)
and (g3z). If H also satisfies (g2) then (3.103) provides ms with the desired
contradiction. Thus it remains to show H;(0;) = 0 and H;(1;) € I°\{0} for
1 <7 < k. Recall that o(G(0)) = 0 if ®;;(G(6)) < c— €/2. But this is the case
if@=0; or 1;. Eg.

G(L) =1,9(01)+ ...+ 7,9(1)+. ..
and
(3.104) 8;i(G(1:)) = 2i(7e.9(1)) = I(72,(9(1)))
=I(g(1)) 0.
The definition of zf(¢) then implies that (8)(t) = 0 in Y%, Thus
Uy, (t) = W(0;)(t) = H(0;)(¢), teY Uy .

Therefore H;(0;) = 0 and similarly H;(1;) = 74,9(1) € I°\{0}. Consequently,
H € I'y, and the proof of Theorem 3.26 is complete.

REMARK 3.105. Since I} # 0 in N,.(A(€))\N,(A(£)), in fact K; NN, (A(L))
£0.

4. Infinite bump solutions

As a simple application of Theorem 3.26, we can obtain infinite bump so-
lutions of (HS). Of course k-bump periodic solutions can be considered to be
infinite bump solutions but the class of infinite bump solutions that will be con-
structed is of a more general nature.

Let (k;) C Z be a doubly infinite sequence with

(4.1) kit1 — ki 2 Lo(r)

for all ¢ € Z where r, £5(r) are as in Proposition 3.30. For each p € N, set
2p = (k—p,y..., kp) € Z?P*1, Let j, € N such that j, > kp — k_p, + £y(r). As in
§§2-3, let

A=A,={v¢ Ej, | 9=1v"||_j,,;,] for some v* € A*}.

Set

ﬁ,’ < A\p}

Alzp) = { i Tie, D

i=—p
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Then by Theorem 3.26, there is a solution @, € Ej;, of (HS) with @, €

N:(A(zp)). Therefore for each ¢ with —p < i < p, there is a v} (depending
on p) € A* such that

(4.2) “QP - Tkiv:”Wl'a[m-;—hmi] <r

Note that for any ¢ € Z and p > [i|, m; = 3(k; + ki+1) and is independent of
p. Since A* is a finite set, by passing to a subsequence if necessary, it can be
assumed that v} is independent of p. The local bounds on @, provided by (4.2)
and the fact that @, are solutions of (HS) imply Q, are bounded in CZ (R, R").
Therefore, via (HS), @, converges along a subsequence to a solution Q of (HS)
satisfying '

(4.3) ”Q - Tkiv;”Wl'z[mi—l,mi] <r

for all ¢ € Z.
By (4.3), Q is an “infinite bump” solution of (HS). Recalling from (3.18) that
for each v* € A*, there is a v € A such that ||[v —v*|| < p/2 < r, we have proved:

THEOREM 4.4. Let V satisfy (V1)-(V3) and (%) holds. Then for any r suffi-
ciently small, there is an £o(r) > 0 such that if (k;) is a doubly infinite sequence
of integers satisfying (4.1) for all i € Z, then there is o finite set A C K(c) and
a solution @ of (HS) satisfying

1Q — ThuVillwt2 (ki +ha) /2, (it kigr) 2] S 27
for all i € Z and some v; € A.

REMARK 4.5. Since A is bounded in C(R, R™) so is @ and in fact it is then
bounded in C#(R,R") via (HS).
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