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1. Introduction

Let S be a semitopological semigroup, i.e. S is a semigroup with a Hausdorff
topology such that for each a ∈ S, the mappings s→ a · s and s→ s · a from S

into S are continuous. Let C be a non-empty subset of a Banach space E and
S = {Ts : s ∈ S} be a continuous representation of S as mappings from C to C,
i.e. the map S × C → C defined by (s, x) → Tsx, s ∈ S, x ∈ C, is continuous
when S×C has the product topology. Let F (S) denote the set of common fixed
points for S in C.

It is well known that if S is left reversible (i.e. any two closed right ideals in
S have non-void intersection), and each Ts, s ∈ S, is a non-expansive self-map of
C, then each of the following conditions implies F (S) is non-empty (see [15]):

(a) C is compact and convex (see [21] and [9]);
(b) C is weakly compact, convex, and has normal structure (see [19]);
(c) S is discrete, C is weakly compact, convex, and each Ts is weakly con-

tinuous (see [10]);
(d) C is a weak∗-compact convex subset of `1 ([20, Theorem 4]).
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It is also known that if AP (S), the space of continuous almost periodic
functions on S, has a left invariant mean, C is compact, convex, and each Ts,
s ∈ S, is a non-expansive self-map of C, then F (S) 6= ∅ (see [26] and [12]).

It is the purpose of this paper to study fixed point properties for non-
expansive or asymptotically non-expansive representations of a semitopologi-
cal semigroup S when S is left amenable or left subamenable (i.e. the space of
bounded left uniformly continuous real-valued functions on S has a left invariant
mean or submean). We prove (Theorem 4.5), among other things, that if CB(S),
the space of bounded continuous functions on S, has a left invariant submean
(which is the case when S is left reversible as a discrete semigroup), then S has
a certain fixed point property for asymptotically non-expansive representations
on non-empty (but not necessarily convex) subsets of a Hilbert space. We also
prove (Theorem 5.3) that if S is left amenable or S is a left subamenable dis-
crete semigroup, then whenever S = {Ts : s ∈ S} is a weak∗-jointly continuous
non-expansive representation of S on a norm-separable weak∗-compact convex
subset C of a dual Banach space, C contains a common fixed point for S.

This paper is organized as follows: In Section 3, we introduce the notion of
left invariant submean and the class of left subamenable semigroups. In Section
4, we study elements in F (S) determined by left invariant submeans when S is
an asymptotically non-expansive representation of S acting on a non-empty (not
necessarily convex) subset of a Hilbert space. Finally (in Section 5), we shall
establish a fixed point property for S when S is a representation of S as non-
expansive self-maps of a weak∗-compact norm-separable subset of a dual Banach
space and S is left amenable or S is a left subamenable discrete semigroup.

2. Some preliminaries

All topologies in this paper are assumed to be Hausdorff. If E is a Banach
space and E∗ its continuous dual, then the value of f ∈ E∗ at x ∈ E will be
denoted by f(x) or 〈f, x〉. Also if A ⊆ E, then Ā and coA will denote the closure
of A and the closed convex hull of A in E, respectively.

Given a non-empty set S, we denote by `∞(S) the Banach space of bounded
real-valued functions on S with the supremum norm. Let S be a semigroup.
Then a subspace X of `∞(S) is left (resp. right) translation invariant if `a(X) ⊆
X (resp. ra(X) ⊆ X) for all a ∈ S, where (`af)(s) = f(as) and (raf)(s) = f(sa),
s ∈ S. If S is a semitopological semigroup, we denote by CB(S) the closed subal-
gebra of `∞(S) consisting of continuous functions. Let LUC(S) (resp. RUC(S))
be the space of left (resp. right) uniformly continuous functions on S, i.e. all
f ∈ CB(S) such that the mapping from S into CB(S) defined by s→ `sf (resp.
s → rsf) is continuous when CB(S) has the sup norm topology. Then as is
known [22] (see also [3]), LUC(S) and RUC(S) are left and right translation
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invariant closed subalgebras of CB(S) containing constants. Note that when S

is a topological group, then LUC(S) is precisely the space of right uniformly
continuous functions on S defined in [6]. Also let AP (S) (resp. WAP (S)) de-
note the space of almost periodic (resp. weakly almost periodic) functions f in
CB(S), i.e. all f ∈ CB(S) such that {`af : a ∈ S} is relatively compact in the
norm (resp. weak) topology of CB(S), or equivalently {raf : a ∈ S} is relatively
compact in the norm (resp. weak) topology of CB(S). Then as is known [3,
p. 164], AP (S) ⊆ LUC(S) ∩ RUC(S), and AP (S) ⊆ WAP (S). When S is a
group, then WAP (S) ⊆ LUC(S) ∩RUC(S) (see [3, p. 167]).

A function f ∈ CB(S) is called asymptotically left uniformly continuous if
for any s ∈ S, ε > 0, there exist a neighbourhood U of s and a right ideal J of
S such that

(2.1) ‖`uf − `sf‖J = sup{|f(ut)− f(st)| : t ∈ J} < ε

for all u ∈ U . The closed linear span of the set of asymptotically left uniformly
continuous functions on S is denoted by ALUC(S). Similarly we define the
closed subspace ARUC(S) of CB(S) with left and right interchanged. Clearly
ALUC(S) ⊇ LUC(S), and ARUC(S) ⊇ RUC(S).

Proposition 2.1. For any semitopological semigroup S, the subspaces
ALUC(S) and ARUC(S) are left and right translation invariant. Furthermore,
if S is left reversible (resp. right reversible), then each function in ALUC(S)
(resp. ARUC(S)) is asymptotically left (resp. right) uniformly continuous. In
this case, ALUC(S) (resp. ARUC(S)) is even an algebra.

Proof. We will only consider the space ALUC(S). Let a ∈ S be fixed, and
f be asymptotically left uniformly continuous. Then for any ε > 0 and s ∈ S,
choose a neighbourhood U of s and a right ideal J such that ‖`uf − `sf‖J < ε

for all u ∈ U . Now (since left and right translations commute),

‖`u(raf)− `s(raf)‖J = ‖ra(`uf − `sf)‖J ≤ ‖`uf − `sf‖J < ε

(since J is a right ideal). Hence raf ∈ ALUC(S). To show that `af ∈ ALUC(S),
we choose a neighbourhood V of as and a right ideal J such that

‖`vf − `asf‖J < ε for all v ∈ V.

Now let U = a−1V = {u ∈ S : au ∈ V }. Then if u ∈ U ,

‖`u(`af)− `s(`af)‖J = ‖`auf − `asf‖J < ε.

It is easy to see that the set L of asymptotically left uniformly continuous
functions on S is norm-closed; also if f ∈ L and α ∈ R, then αf ∈ L. Suppose
S is left reversible and f, g ∈ L. Let s ∈ S. Choose neighbourhoods Uf and Ug
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and right ideals Jf , Jg such that (2.1) holds for f and g. Let U = Uf ∩ Ug, and
J = J̄f ∩ J̄g. Then J is a right ideal of S, and for any u ∈ U ,

‖`u(f + g)− `s(f + g)‖J ≤ ‖`uf − `sf‖Jf
+ ‖`ug − `sg‖Jg

< 2ε,

i.e. f + g ∈ L. Similarly we show that f · g ∈ L.

Proposition 2.2.

(a) If S has no proper right (resp. left) ideal, then LUC(S) = ALUC(S)
(resp. RUC(S) = ARUC(S)).

(b) If S has jointly continuous multiplication and contains a compact right
(resp. left) ideal, then CB(S) = ALUC(S) (resp. CB(S) = ARUC(S)).

Proof. (a) is trivial.
(b) Let J be a compact right ideal of S and f ∈ CB(S). Then, to show

f ∈ ALUC(S), it is sufficient to show that for any ε > 0 and s ∈ S, there exists
a neighbourhood U of s such that

‖`uf − `sf‖J < ε for all u ∈ U.

If not, there exists a net {uα} such that uα → s and

‖`uα
f − `sf‖J ≥ ε for each α.

For α, pick tα ∈ J such that

‖`uα
f − `sf‖J = |(`uα

f − `sf)(tα)|.

By compactness of J , and by passing to a subnet, we may assume that tα → t0

for some t0 ∈ J . Then

0 < ε ≤ ‖`uα
f − `sf‖J = |f(uαtα)− f(stα)|

≤ |f(uαtα)− f(st0)|+ |f(st0)− f(stα)| → 0

by joint continuity of multiplication in S.

Let S be a non-empty set andX be a subspace of `∞(S) containing constants.
Then µ ∈ X∗ is called a mean on X if ‖µ‖ = µ(1) = 1. As is well known, µ is a
mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s) for each f ∈ X.

By a submean on X, we shall mean a real-valued function µ on X with the
following properties:

(1) µ(f + g) ≤ µ(f) + µ(g) for every f, g ∈ X;
(2) µ(αf) = αµ(f) for every f ∈ X and α ≥ 0;
(3) for f, g ∈ X, f ≤ g implies µ(f) ≤ µ(g);
(4) µ(c) = c for every constant function c.
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Remark 2.3. (a) Clearly every mean is a submean. The notion of submean
was first introduced by Mizoguchi and Takahashi in [23].

(b) Let SM denote the set of submeans on X. For each φ ∈ SM , −‖f‖ ≤
φ(f) ≤ ‖f‖ by (3) and (4). Hence SM may be identified as a subset of the prod-
uct space

∏
f∈X [−‖f‖, ‖f‖], which is compact by Tikhonov’s Theorem. Hence

SM is a compact convex subset of the product topological vector space
∏
f∈X Rf ,

where each Rf = R.
Depending on time and circumstances, the value of a submean (or mean) µ

at f ∈ X will also be denoted by µ(f), 〈µ, f〉 or µtf(t).

3. Subamenability and reversibility

In this section, we study the relation between invariant submeans on sub-
spaces of CB(S) of a semitopological semigroup S and reversibility of S.

If S is a semigroup, and X ⊆ `∞(S) is a left translation invariant subspace of
`∞(S) containing constants, a submean µ on X is left invariant if µ(`af) = µ(f)
for each a ∈ S and f ∈ X.

We abbreviate left invariant submean = LISM and left invariant mean =
LIM .

Lemma 3.1. Let S be a semitopological semigroup and X be a left translation
invariant subspace of CB(S) containing constants and which separates closed
subsets of S. If X has a LISM , then S is left reversible.

Proof. Let µ be a LISM of X, and I1 and I2 be disjoint non-empty closed
right ideals of S. By assumption, there exists f ∈ X such that f ≡ 1 on I1 and
f ≡ 0 on I2. Now if a1 ∈ I1, then `a1f = 1. So µ(f) = µ(`a1f) = 1. But if
a2 ∈ I2, then `a2f ≡ 0. So µ(f) = µ(`a2f) = 0, which is impossible.

Corollary 3.2. If S is normal and CB(S) has a LISM , then S is left
reversible.

Corollary 3.3. If S is normal and CB(S) has a LISM , then AP (S) has
a LIM .

Proof. This follows from Corollary 3.2 and [12, Corollary 3.3].

Remark 3.4. Corollary 3.2 is false without normality. Indeed, let S be the
topological space which is regular and Hausdorff and CB(S) consists of constant
functions only ([5]). Define on S the multiplication st = s for s, t ∈ S. Let a ∈ S
be fixed. Define µ(f) = f(a) for all f ∈ CB(S). Then µ is a LISM on CB(S),
but S is not left reversible.

If S is a left reversible semitopological semigroup, then (S,�) is a directed
system when the binary relation � on S is defined by a � b if and only if
{a} ∪ aS ⊇ {b} ∪ bS, a, b ∈ S.
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Lemma 3.5. Let S be a semitopological semigroup, J be a non-empty subset
of S and f ∈ LUC(S). If sup{f(t) : t � u} ≥ β for each u ∈ J , then
sup{f(t) : t � p} ≥ β for each p ∈ J̄ .

Proof. Let p ∈ J̄ and sup{f(t) : t � p} ≤ β − δ, δ > 0. Then

f(ps) ≤ β − δ for each s ∈ S ∪ {e},

where xe = ex = e. Let uα ∈ J be a net such that uα → p. Hence ‖`uαf−`pf‖ →
0. Consequently, there exists α0 such that

f(uαs) ≤ β − δ/2 for each s ∈ S ∪ {e}, α ≥ α0.

Hence for α ≥ α0, we have sup{f(t) : t � uα} ≤ β − δ/2, which contradicts the
assumption.

A semitopological semigroup S is left subamenable if LUC(S) has a LISM .

Proposition 3.6. Let S be a semitopological semigroup. If S is left re-
versible, then S is left subamenable.

Proof. For each f ∈ CB(S), define

µ(f) = inf
s

sup
t�s

f(t).

Then µ is a submean on CB(S). Indeed, if f, g ∈ CB(S), and ε > 0, choose
a, b ∈ S such that

sup
t�a

f(t) ≤ µ(f) + ε and sup
t�b

g(t) ≤ µ(g) + ε.

Let c ∈ aS∩bS (which is non-empty by left reversibility). Then c � a and c � b.
Hence

sup
t�c

f(t) ≤ µ(f) + ε and sup
t�c

g(t) ≤ µ(g) + ε.

So
sup
t�c

(f(t) + g(t)) ≤ sup
t�c

f(t) + sup
t�c

g(t) ≤ µ(f) + µ(g) + 2ε.

Consequently, µ(f + g) ≤ µ(f) + µ(g) + 2ε. Since ε > 0 is arbitrary, condition
(1) for a submean holds. The proofs of conditions (2), (3) and (4) are routine.

To see that µ is left invariant, let f ∈ LUC(S) and a ∈ S. Then

µ(`af) = inf
s

sup
t�s

f(at) = inf
s
{sup{f(at) : t ∈ sS ∪ {s}}

= inf
s
{sup{f(at) : t ∈ sS ∪ {s}}

(by continuity of f and multiplication in S)

= inf
s
{sup{f(ast) : t ∈ S ∪ {e}} (where se = s)

= inf
s
{sup{f(t) : t ∈ asS ∪ {as}}} = inf

s
sup
t�as

f(t) ≥ µ(f).
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To prove the reverse inequality, let α = µ(f) and β = µ(`af), f ∈ LUC(S).
Then for each s ∈ S, supt�as f(t) ≥ β. Hence, by Lemma 3.5,

(3.1) sup
t�p

f(t) ≥ β for all p ∈ aS.

If α < β, let ε = (β − α)/2. Choose s0 such that supt�s0 f(t) < α + ε.

Then for each s � s0, supt�s f(t) < α + ε. Let p ∈ s0S ∩ aS. Then p � s0; so
supt�p f(t) < α+ ε, contradicting (3.1).

Corollary 3.7. Let S be a discrete semigroup. Then S is left reversible if
and only if S is left subamenable. In this case WAP (S) has a LIM .

Proof. The first statement follows from Corollary 3.2 and Proposition 3.6,
and the last statement follows from [10] (see also [13] and Remark 5.7).

Proposition 3.8. Let S, T be semitopological semigroups, and θ : S → T

a continuous homomorphism of S onto T . If S is left subamenable, then T is
left subamenable.

Proof. Let θ̃ : LUC(T ) → LUC(S) be defined by θ̃(f)(s) = f(θ(s)). Let
µ be a left invariant submean on LUC(S). Then µ̃(f) = µ(θ̃(f)) is a submean,
and µ̃(`tf) = µ(θ̃(`tf)) = µ(`sθ̃(f)) = µ(θ̃(f)) = µ̃(f), where s ∈ S is such that
θ(s) = t.

Remark 3.9. A subsemigroup of a left subamenable (even amenable) semi-
group need not be left subamenable. Indeed, there is a solvable group G which
contains a free subsemigroup S on 2-generators. Clearly G is amenable, and S

is not left subamenable by Corollary 3.7 (see [7]).

Proposition 3.10. Let G be an amenable group, and S ⊆ G be a subsemi-
group of G. Then S is left amenable if and only if S is left subamenable.

Proof. If S is left subamenable, then S is left reversible (Corollary 3.2),
and so S must be left amenable [16, Theorem 1]. The converse is obvious.

Proposition 3.11. Let S be a semitopological semigroup and {Sα : α ∈ I}
be subsemigroups of S with the induced topology such that

⋃
{Sα : α ∈ I} = S

and for each α, β ∈ I, there exists γ ∈ I such that Sγ ⊇ Sα ∪ Sβ. If for each
α ∈ I, Sα is left subamenable, then S is left subamenable.

Proof. Partially order I by α � β if and only if Sα ⊇ Sβ . Then “�” makes
I into a directed set. For f ∈ LUC(S), α ∈ I, define a function Pαf on Sα
by (Pαf)(s) = f(s) if s ∈ Sα. One readily checks that Pαf ∈ LUC(Sα) and
`a(Pαf) = Pα(`af) for a ∈ Sα. For each α ∈ I, let µα be a LISM on LUC(Sα).
Define a submean µα on LUC(S) by µα(f) = µα(Pαf). Then µα(`af) = µα(f)
for each a ∈ Sα. Since the set SM of submeans on LUC(S) is compact in the
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topology of pointwise convergence (see Remark 2.3(b)), by passing to a subnet
if necessary, we may assume that µα → µ for a submean µ on LUC(S). Then,
as is readily checked, µ is a LISM on LUC(S).

4. Asymptotically non-expansive representations

Let S be a semigroup and C be a non-empty subset of a Banach space E.
Let S = {Ts : s ∈ S} be a representation of S as mappings from C into E. We
say that S is left asymptotically non-expansive if for any ε > 0 and x ∈ C, there
exists a left ideal J of S such that

‖Tsx− Tsy‖ ≤ ‖x− y‖+ ε

for each s ∈ J and y ∈ C.
Note that our notion of left asymptotic non-expansiveness differs from a

similar notion used in [8]. It coincides with the notion of asymptotic non-
expansiveness defined in [11] for the commutative semigroups R+ ∪ {0} and
N ∪ {0} with addition.

Proposition 4.1. Let S be a semigroup and let C be a closed convex subset
of a uniformly convex Banach space E. Let S = {Tt : t ∈ S} be a left asymptot-
ically non-expansive semigroup on C such that for each s ∈ S, Ts is continuous.
Then F (S) is closed and convex.

Proof. It is sufficient to show z = (x + y)/2 ∈ F (S) if x, y ∈ F (S). We
first show that for any ε > 0, there exists t0 ∈ S such that

‖Ttt0z − z‖ < ε for every t ∈ S.

If not, there exists ε > 0 such that for each s ∈ S, there is ts ∈ S with ‖Ttssz −
z‖ ≥ ε. For such ε, choose ε0 > 0 such that(

1
2
‖x− y‖+ ε0

)(
1− δ

(
‖x− y‖

1
2‖x− y‖+ ε0

))
< ε,

where δ is the modulus of convexity of E. Then choose u ∈ S such that

sup
t

sup
f∈C

(‖Ttuz − Ttuf‖ − ‖z − f‖) < ε0.

Hence, we have

‖Ttuz − x‖ < ‖z − x‖+ ε0 and ‖Ttuz − y‖ < ‖z − y‖+ ε0

for every t ∈ S. Therefore, for each t ∈ S,

‖Ttuz − z‖ =
∥∥∥∥Ttuz − x+ Ttuz − y

2

∥∥∥∥
≤

(
1
2
‖x− y‖+ ε0

)(
1− δ

(
‖x− y‖

1
2‖x− y‖+ ε0

))
< ε.
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On the other hand, for such u ∈ S, there exists tu ∈ S such that ‖Ttuuz−z‖ ≥ ε.
This is a contradiction.

Suppose S is a non-empty set, and let X be a subspace of `∞(S) containing
constants. Let µ be a submean on X, E be a Banach space, Φ : S → E be a
bounded function, and K be a closed convex subset of E. Suppose that for each
x ∈ K, the real-valued function f on S defined by

fx(t) = ‖Φ(t)− x‖2 for all t ∈ S

belongs to X. Then setting

r(x) = 〈µ, fx〉 for all x ∈ K,

we define r = infx∈K r(x) and Mµ = {y ∈ K : r(y) = r} .

Lemma 4.2. The non-negative real-valued function r on K is continuous,
convex and r(xn) →∞ as ‖xn‖ → ∞. If E is reflexive or K is weakly compact,
then Mµ is a non-empty closed convex subset of K. Furthermore, if E is a
Hilbert space, then Mµ contains a unique element y and r + ‖y − x‖ ≤ r(x) for
all x ∈ K.

Proof. We first observe that r is continuous and convex on K. Indeed, if
x, y ∈ K, then for each t ∈ S,

(4.1) ‖Φ(t)− y‖2 − ‖Φ(t)− x‖2

= (‖Φ(t)− y‖+ ‖Φ(t)− x‖)(‖Φ(t)− y‖ − ‖Φ(t)− x‖)
≤ γ(‖Φ(t)− y‖ − ‖Φ(t)− x‖) ≤ γ‖x− y‖

where γ = 2α + ‖x‖ + ‖y‖, with α = {‖Φ(t)‖ : t ∈ S} < ∞ by boundedness of
Φ. Also we have by (4.1),

‖Φ(t)− y‖2 ≤ ‖Φ(t)− x‖2 + γ‖x− y‖.

Hence
〈µ, fy〉 ≤ 〈µ, fx〉+ γ‖x− y‖.

Similarly
〈µ, fx〉 ≤ 〈µ, fy〉+ γ‖x− y‖.

So |r(x) − r(y)| ≤ γ‖x − y‖. This implies that r is continuous on K. Also, if
0 ≤ λ ≤ 1 and x, y ∈ K, then

‖Φ(t)− (λx+ (1− λ)y)‖2 ≤ λ‖Φ(t)− x‖2 + (1− λ)‖Φ(t)− y‖2.

Hence fλx+(1−λ)y(t) ≤ λfx(t)+(1−λ)fy(t). So, by the properties of a submean,

r(λx+ (1− λ)y) ≤ λr(x) + (1− λ)r(y),
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i.e. r is a convex function. Finally, since ‖Φ(t)−x‖2 ≥ (‖x‖−α)2 for ‖x‖ ≥ α+1,
we have r(xn) ≥ (‖xn‖ − α)2 →∞ as n→∞.

That Mµ is closed and convex follows from continuity and convexity of r.
Also, if E is reflexive, then Mµ is non-empty by [2, p. 89]. If K is weakly
compact, for each n, let Kn = {x ∈ K : r(x) ≤ r+ 1/n}. Then each Kn is norm
closed and convex by continuity and convexity of r. Hence Kn is also weakly
closed. Since {Kn : n = 1, 2, . . . } has finite intersection property, it follows that
the set Mµ =

⋂
Kn is closed, convex and non-empty. The last statement was

proved in [23, Lemma 1].

Lemma 4.3. Let S be a semitopological semigroup, and let S = {Ts : s ∈ S}
be a left asymptotically non-expansive continuous representation of S as self-
maps of a non-empty subset C of a Banach space E. If C contains an element
z of bounded orbit, then the function fx(t) = ‖Ttz − x‖2, t ∈ S, belongs to
ARUC(S) for each x ∈ E. Furthermore, if S is non-expansive, then each fx ∈
RUC(S).

Proof. Clearly the functions fx, x ∈ E, are bounded and continuous. To
see that f = fx ∈ ARUC(S), let γ = 2 supt∈S ‖Ttz − x‖. Then for s ∈ S and
ε > 0, choose a neighbourhood U of s and a left ideal J of S such that

(i) ‖Tuz − Tsz‖ < ε for all u ∈ U ,
(ii) ‖Tt(Tsz)− Tty‖ ≤ ‖Tsz − y‖+ ε for all t ∈ J and y ∈ C.

Then for u ∈ U ,

‖ruf − rsf‖J = sup
t∈J

{|ruf(t)− rsf(t)|}

= sup
t∈J

|f(tu)− f(ts)| = sup
t∈J

|‖Ttuz − x‖2 − ‖Ttsz − x‖2|

= sup
t∈J

|(‖Ttuz − x‖+ ‖Ttsz − x‖) · (‖Ttuz − x‖ − ‖Ttsz − x‖)|

≤ γ sup
t∈J

‖Ttuz − Ttsz‖ = γ sup
t∈J

‖Tt(Tuz)− Tt(Tsz)‖

≤ γ(‖Tuz − Tsz‖+ ε) (by (ii))

≤ 2γε (by (i)),

i.e. fx ∈ ARUC(S).
The proof of the second statement is similar.

Theorem 4.4. Let S be a semitopological semigroup, and C be a closed
convex subset of a Banach space E. Let S = {Ts : s ∈ S} be a left asymptotically
non-expansive continuous representation of S as self-maps of C. If C contains
an element z such that {Ttz : t ∈ S} is bounded, let Mµ = {y ∈ C : r(y) = r},
where r = infx∈C r(x), r(x) = µt‖Ttz − x‖2 and µ is a submean on ARUC(S).

(a) If E is reflexive or C is weakly compact, then Mµ is a non-empty closed
convex subset of C.
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(b) If µ is a LISM on ARUC(S), then for any y ∈ Mµ and ε > 0, there
exists a left ideal J of S such that r(Tsy) < r + ε for all s ∈ J .

(c) If S is non-expansive, and µ is a LISM on RUC(S), then Mµ is S-
invariant.

Proof. (a) is a consequence of Lemmas 4.2 and 4.3.
(b) If µ is a LISM on ARUC(S), y ∈ M , and ε > 0, choose a left ideal

J ⊆ S such that

‖Tsy − Tsy
′‖ ≤ ‖y − y′‖+ δ for all s ∈ J, y′ ∈ C,

where δ > 0, δ2 + 2δγ < ε, and γ = supt∈S ‖Ttz − y‖2. Then for any t ∈ S,

µt(‖Ttz − Tsy‖2) = µt‖Tstz − Tsy‖2 (by invariance of µ)

≤ µt(‖Ttz − y‖+ δ)2 (since Ttz ∈ C)

≤ µt(‖Ttz − y‖2 + δ2 + 2δγ) ≤ r + ε,

i.e. r(Tsy) < r + ε for all s ∈ J .
(c) If S is non-expansive, then each fx ∈ RUC(S) (Lemma 4.3). Hence if µ

is a LISM on RUC(S), y ∈Mµ, and s ∈ S, we have

µt‖Ttz − Tsy‖2 = µt‖Tstz − Tsy‖2 ≤ µt‖Ttz − y‖2.

Hence Tsy ∈Mµ.

Theorem 4.5. Let S be a semitopological semigroup. If ARUC(S) has a
LISM , then S has the following fixed point property:

(H) Whenever S = {Ts : s ∈ S} is a left asymptotically non-expansive
continuous representation of S on a non-empty subset C of a Hilbert
space such that for some z ∈ C, {Ttz : t ∈ S} is bounded and⋂

s∈S
co {Tstz : t ∈ S} ⊆ C,

then C contains a common fixed point for S.

Remark 4.6. Note that the condition
⋂
s∈S co {Tstz : t ∈ S} ⊆ C is auto-

matically satisfied when C is closed, convex and S-invariant.

Proof of Theorem 4.5. Let µ be a LISM on ARUC(S). By Lemma 4.3,
for each x ∈ H, the function fx(t) = ‖Ttz − x‖2, t ∈ S, is in ARUC(S). Let
Mµ = {y ∈ H : r(y) = r}, where r = inf{r(x) : x ∈ H} and r(x) = 〈µ, fx〉. By
Lemma 4.2, Mµ contains a unique element y such that

(4.2) r + ‖y − x‖2 ≤ r(x) for all x ∈ H.
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For each s ∈ S, let Qs be the metric projection of H onto co {Tstz : t ∈ S}.
Then by [24], Qs is non-expansive, and for each t ∈ S,

(4.3) ‖Tstz −Qsy‖2 = ‖QsTstz −Qsy‖2 ≤ ‖Tstz − y‖2.

So, we have
µt‖Ttz −Qsy‖2 = µt‖Tstz −Qsy‖2

≤ µt‖Tstz − y‖2 (by (4.3))

= µt‖Ttz − y‖2

and thus Qsy = y. This implies y ∈ co {Tstz : t ∈ S} for every s ∈ S and hence
y ∈

⋂
s∈S co {Tstz : t ∈ S} ⊆ C. We shall now show that Tsy = y for all s ∈ S.

In fact, since Ttz ∈ C for each t ∈ S and {Ttz : t ∈ S} is bounded, for any ε > 0
there exists s0 ∈ S such that

‖Tss0y − Tss0Ttz‖2 < ‖y − Ttz‖2 + ε2

for all s, t ∈ S. Then

(4.4) µt‖Tss0y − Ttz‖2 = µt‖Tss0y − Tss0tz‖2

= µt‖Tss0y − Tss0Ttz‖2 ≤ µt‖y − Ttz‖2 + ε2

for all s ∈ S. On the other hand, since

‖y − x‖2 ≤ µt‖Ttz − x‖2 − µt‖Ttz − y‖2 (by (4.2))

for all x ∈ H, we have for each s ∈ S,

(4.5) ‖y − Tss0y‖2 ≤ µt‖Ttz − Tss0y‖2 − µt‖Ttz − y‖2

≤ µt‖y − Ttz‖2 + ε2 − µt‖Ttz − y‖2 = ε2.

Fix s ∈ S, and let ε > 0. Then, from continuity of Ts at y, there exists δ > 0
such that

(4.6) ‖y − f‖ < δ ⇒ ‖Tsy − Tsf‖ < ε/2, f ∈ C.

By (4.5), we may choose s0 ∈ S such that ‖Tts0y − y‖ < min{ε/2, δ} for every
t ∈ S. Then by (4.6), we have for each t ∈ S,

‖Tsy − y‖ ≤ ‖Tsy − TsTts0y‖+ ‖Tsts0y − y‖ < ε/2 + ε/2 = ε.

Since ε > 0 is arbitrary, we have Tsy = y for every s ∈ S. This completes the
proof.
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Corollary 4.7. Any discrete left subamenable semigroup has the fixed point
property (H).

Proof. This follows from Corollary 3.2.

Let S = {Ts : s ∈ S} be a left asymptotically non-expansive continuous
representation of S on a non-empty subset C of a Hilbert space and z ∈ C

such that {Ttz : t ∈ S} is bounded and
⋂
s∈S co {Tstz : t ∈ S} ⊆ C. Then for

each x ∈ H, the function h(t) = 〈Ttz, x〉 is in ARUC(S). If µ is a mean on
ARUC(S), by the Riesz representation theorem, there exists zµ ∈ H such that
µt〈Ttz, x〉 = 〈zµ, x〉 for each x ∈ H [27].

A net of means {µα} on ARUC(S) is called asymptotically invariant ([24],
[29]) if for each f ∈ ARUC(S) and a ∈ S,

µα(raf)− µα(f) → 0 and µα(`af)− µα(f) → 0.

Theorem 4.8. Let S be a semitopological semigroup and S = {Ts : s ∈ S}
be a left asymptotically non-expansive continuous representation of S on a non-
empty subset C of a Hilbert space. Assume that there exists z ∈ C such that
{Ttz : t ∈ S} is bounded and

⋂
s∈S co {Tstz : t ∈ S} ⊆ C. If µ is a left invariant

mean on ARUC(S), then zµ is a common fixed point for S such that

r(zµ) = inf
y∈H

r(y), where r(y) = µt‖Ttz − y‖2.

Furthermore, if µ is an invariant mean on ARUC(S), then for any asymptoti-
cally invariant net {µα} of means on ARUC(S), the net zµα converges weakly to
zµ. In particular, if ψ is another invariant mean on ARUC(S), then zµ = zψ.

Proof. Observe that if for any x ∈ H and t ∈ S,

‖zµ − x‖2 = ‖Ttz − x‖2 − ‖Ttz − zµ‖2 − 2 〈Ttz − zµ, zµ − x〉 ,

then

0 ≤ ‖zµ − x‖2 = µt(‖Ttz − x‖2 − ‖Ttz − zµ‖2 − 2 〈Ttz − zµ, zµ − x〉)
= µt‖Ttz − x‖2 − µt‖Ttz − zµ‖2 − 2 〈zµ − zµ, zµ − x〉
= µt‖Ttz − x‖2 − µt‖Ttz − zµ‖2.

This implies that Mµ consists of the single point zµ. So, by the proof of Theorem
4.5, zµ is a common fixed point for S and r(zµ) = r.

If µ is an invariant mean on ARUC(S), then

µt‖Ttz − x‖2 ≤ inf
s

sup
t
‖Ttsz − x‖2 (by right invariance of µ),

for each x ∈ H [28]. On the other hand, for any y ∈ F (S) and s ∈ S,

inf
u

sup
t

(‖y − TtuTsz‖2 − ‖y − Tsz‖2) ≤ 0
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and hence

inf
u

sup
t
‖Ttuz − y‖2 ≤ inf

u
sup
t
‖Ttusz − y‖2 = inf

u
sup
t
‖TtuTsz − y‖2 ≤ ‖Tsz − y‖2.

So, we have
inf
u

sup
t
‖Ttuz − y‖2 ≤ µs‖Tsz − y‖2.

Therefore, for each y ∈ F (S),

µt‖Ttz − y‖2 = inf
s

sup
t
‖Ttsz − y‖2.

Hence if ψ is another invariant mean on ARUC(S), then zψ ∈ F (S); hence

µt‖Ttz − zµ‖2 = inf
s

sup
t
‖Ttsz − zµ‖2 ≤ µt‖Ttz − zψ‖2

= inf
s

sup
t
‖Ttsz − zψ‖2 = ψt‖Ttz − zψ‖2 ≤ ψt‖Ttz − zµ‖2

= inf
s

sup
t
‖Ttsz − zµ‖2 = µt‖Ttz − zµ‖2.

Hence µt‖Ttz − zµ‖2 = µt‖Ttz − zψ‖2. By uniqueness of the element in Mµ, we
have zµ = zψ.

Finally, if {µα} is an asymptotically invariant net, and µ is a cluster point of
{µα} in the weak∗-topology, then µ is an invariant mean on ARUC(S). Hence if
{zµβ

} is a subnet of the net {zµα
} such that zµβ

converges weakly to some y in
H, then, since a cluster point ψ of {µαβ

} is also a cluster point of {µα}, ψ is an
invariant mean. So, y = zψ = zµ by the above. This implies that zµα converges
weakly to zµ.

5. Weak∗-compact convex sets

In this section, we shall establish a fixed point property for representations
of a semitopological semigroup S as non-expansive self-maps of norm-separable
and weak∗-compact convex sets of a dual Banach space when S is left amenable,
i.e. LUC(S) has a LIM (see [14] for various properties of such semigroups), or
a discrete left subamenable semigroup.

Lemma 5.1. Let S be a left amenable semitopological semigroup or a discrete
left subamenable semigroup. Let X be a compact Hausdorff space such that S×X
→ X, (s, x) → s · x, is a jointly continuous action of S on X. Then there exists
a compact S-invariant subset K of X satisfying:

(1) S(x) = K for each x ∈ K,
(2) s(K) = K for every s ∈ S.

Proof. We first assume that S is amenable. By Zorn’s lemma, there exists
a non-empty closed subset K of X which is minimal with respect to being closed
and invariant under each element of S. Let y ∈ K. Define (Tyf)(s) = f(s · y),
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s ∈ S, f ∈ C(K). Then Tyf ∈ LUC(S). Indeed, Tyf ∈ CB(S). If aα → a and
‖`aαTyf − `aTyf‖ → 0, we may assume, by passing to a subnet if necessary, that
there exists ε > 0 such that

‖`aα
Tyf − `aTyf‖ ≥ ε for any α.

Now

‖`aα
Tyf − `aTyf‖ = sup

s∈S
{|f(aαsy)− f(asy)|} = sup

z∈O(y)

{|f(aαz)− f(az)|}.

Since O(y) is compact, where O(y) = {t ·y : t ∈ S}, and z → |f(aαz)−f(az)|
is continuous on O(y), we may find zα ∈ O(y) such that ‖`aα

Tyf − `aTyf‖ =
|f(aαzα) − f(azα)| for each α. Again by passing to a subnet, we may assume
that zα → z0. So

ε = ‖`aαTyf − `aTyf‖ = |f(aαzα)− f(azα)|
≤ |f(aαzα)− f(az0)|+ |f(az0)− f(azα)| → 0

by joint continuity of the action of S on X. Let m be a LIM on LUC(S). Define
a positive norm one functional φ on C(K) by φ(f) = m(Tyf) for all f ∈ C(K).
Then, as is readily checked, φ(sf) = φ(f) for all s ∈ S and f ∈ C(K), where

sf(x) = f(s · x), x ∈ K, s ∈ S. Let µ be the probability measure on K

corresponding to φ. Then µ(B) = µ(a−1B) for all a ∈ S and for each Borel
subset B of K. Let = be the family of all closed subsets B of K such that
µ(B) = 1, and let K0 =

⋂
=. Then K0 is non-empty. Also if B ∈ = and s ∈ S,

then s−1B ∈ =. Hence s−1K0 ⊇ K0 orK0 ⊇ sK0. By minimality ofK, K = K0.
Since µ(aK) = µ(a−1(aK)) = µ(K) = 1, aK ∈ = for each a ∈ S. Therefore
K ⊇ aK ⊇ K0 = K; hence aK = K. So (2) holds; (1) follows by minimality
of K.

If S is a discrete left subamenable semigroup, then S is left reversible (Corol-
lary 3.2). Hence by Lemma 2 in [10, Chapter 2], any minimal invariant subset
K of X satisfies (1) and (2).

Lemma 5.2. Let E be a Banach space, and τ be a Hausdorff locally con-
vex topology on E weaker than the norm topology; let K be a τ -compact norm-
separable subset of E and let S = {Ts : s ∈ S} be a representation of a semigroup
S as non-expansive and τ -τ -continuous self-maps of K such that for each x ∈ K,
{Ttx : t ∈ S} is τ -dense in K. Then for any z ∈ K and any τ -neighbourhood V
of 0, there exist t1, . . . , tp ∈ S such that K =

⋃p
j=1{T−1

sj
[(z + V ) ∩K]} where

sj = tjtj−1 . . . t1. Furthermore, if each Ts is onto and {x ∈ E : ‖x‖ ≤ 1} is
τ -closed, then the τ -topology agrees with the norm topology on K. In particular,
K is norm-compact.
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Proof. We follow an idea of Hsu in [10, Chapter 2, Lemma 3]. Fix z ∈ K
and a τ -neighbourhood V of 0. For ε > 0, let Nε = {x ∈ E : ‖x‖ < ε}. Choose
a τ -open neighbourhood V1 of 0 such that V1 + V1 ⊆ V . Since V1 is also a norm
neighbourhood of 0, there exists δ > 0 such that Nδ ⊆ V1. Cover K by countably
many sets xi +Nδ, xi ∈ K. Since {Ttx1 : t ∈ S} is τ -dense in K, we can choose
t1 ∈ S such that Tt1x1 ∈ (z + V1) ∩K. By induction, we can choose a sequence
{tj}, j = 1, 2, . . . , in S such that Tsj

xj ∈ (z + V1) ∩K where sj = tjtj−1 . . . t1.
Since each Ts is non-expansive, we have

Tsj [(xj +Nδ) ∩K] ⊆ (z +Nδ + V1) ∩K ⊆ (z + V ) ∩K.

Consequently, {T−1
sj

[(z + V ) ∩ K]}∞j=1 is a τ -open covering of K. Since K is
τ -compact, there exists p such that K =

⋃p
j=1 T

−1
sj

[(z + V ) ∩K].
Now if each Ts is onto and {x ∈ E : ‖x‖ ≤ 1} is τ -closed, let ε > 0 be fixed.

Cover K by countably many sets yi + 1
2Nε, yi ∈ K; as K is τ -compact, hence

second category in itself, there is a point y ∈ K and a τ -open set W such that

K ∩ ( 1
2Nε + y) ⊇W ∩K 6= ∅.

Let z ∈ W ∩K and V be a τ -open neighbourhood of 0 such that z + V ⊆ W .
So we have (z + V ) ∩K = ∅ and

(5.1) (z + V ) ∩K ⊆ (y + 1
2Nε) ∩K ⊆ (z +Nε) ∩K.

By the above, we can find t1, . . . , tp ∈ S such that K =
⋃p
j=1 T

−1
sj

[(z + V )∩K],
where sj = tjtj−1 . . . t1. Since each Ts is onto, we have

K = Tsp
K = Tsp

{ p⋃
j=1

Ts−1
j

[(z + V ) ∩K]
}

⊆
p⋃
j=1

{Ttptp−1...tj+1 [(z + V ) ∩K]}

⊆
p⋃
j=1

{Ttptp−1...tj+1 [(z +Nε) ∩K]} (by (5.1))

⊆
p⋃
j=1

{Ttptp−1...tj+1(z) +Nε}

by non-expansiveness of Ts, s ∈ S. Consequently, K is totally bounded. So K
is norm-compact. Since the topology τ on K is Hausdorff and weaker than the
norm topology, it follows that they must agree on K.
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Theorem 5.3. Let S be a semitopological semigroup. If either S is left
amenable or S is a left subamenable discrete semigroup, then S has the following
fixed point property:

(F) Whenever S = {Ts : s ∈ S} is a representation of S as norm non-
expansive mappings of a norm-separable weak∗-compact convex subset
C of a dual Banach space such that the map S ×C → C, (s, x) → Tsx,
s ∈ S, x ∈ C, is jointly continuous when C has the weak∗-topology, then
there exists a common fixed point for S in C.

Proof. We shall prove the theorem for the case of LUC(S) having a LIM .
The proof of the left subamenable case is similar using Theorem 5.1 and Corollary
3.7.

By Zorn’s lemma, there exists a non-empty weak∗-compact convex subset X
of C which is minimal with respect to being weak∗-closed, convex and invariant
under each element of S. A second application of Zorn’s lemma shows that
there is a non-empty subset F of X which is minimal with respect to being
weak∗-closed and invariant under each element of S. By Lemma 5.2, F is norm-
compact. If F consists of one point, we are done. Otherwise, let r = diam(F ).
Then by [4, Lemma 1], there is u ∈ coF ⊆ X such that

r0 = sup{‖u− x‖ : x ∈ F} < r.

Let X0 = X ∩
⋂
x∈F B[x, r0], where B[x, r0] = {y ∈ E : ‖x− y‖ ≤ r0} (which is

weak∗-closed). Then u ∈ X0 and X0 is a non-empty weak∗-closed convex proper
subset of X. Furthermore, if x ∈ X0, then x ∈ X and F ⊆ B[x, r0]. Hence
for any a ∈ S, F = a · F ⊆ B[a · x, r0] by non-expansiveness of S on X. It
follows that aX0 ⊆ X0, contradicting the minimality of X. Consequently, F
must consist of a single point.

Remark 5.4. (a) Let (F′) denote the same fixed point property as (F) with
the separability condition removed. Then an argument similar to the proof of
Theorem 1 of [22] shows that (F′) ⇒ LUC(S) has a LIM . In particular, S left
subamenable ⇒ (F′) in general. However, we do not know if LUC(S) has a
LIM ⇒ (F′). (See [12, Problem 5].)

(b) T. C. Lim [20, Theorem 4] shows that if S is left reversible (topologically)
and S = {Ts : s ∈ S} is a continuous representation of S as non-expansive
self-maps of a weak∗-compact convex subset C of `1 (which is separable), then
C contains a common fixed point for S without the assumption that the map
ψ : (s, x) → Tsx from S × C to C is jointly continuous when C has the weak∗-
topology. However, this weak∗-continuity condition on ψ cannot be entirely
dropped in general. Indeed, it follows from Alspach’s example [1] that there exists
a representation of the commutative semigroup S = (N,+), N = {1, 2, . . . }, as
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non-expansive mappings of a weakly compact convex subset C of the separable
Banach space L1[0, 1]. Then C, regarded as a subset of L1[0, 1]∗∗, is norm-
separable, weak∗-compact, and convex.

Corollary 5.5. Let S be a semitopological semigroup. If S is left amenable
or if S is a left subamenable discrete semigroup, then S has the following fixed
point property:

(G) Whenever S = {Ts : s ∈ S} is a representation of S as norm non-
expansive mappings on a norm-separable weakly compact convex subset
of a Banach space E such that the map S×C → C, (s, x) → Tsx, s ∈ S,
x ∈ C, is jointly continuous when C has the weak topology, then there
exists a common fixed point for S in C.

Proof. Embed C in E∗∗. Then C is norm-separable, weak∗-compact and
convex.

Remark 5.6. (a) Corollary 5.5 follows from Hsu [10] for the case when S is
discrete and left subamenable (using Corollary 3.2).

(b) We do not know whether a left subamenable semitopological semigroup
would have fixed point properties (F) or (G).
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