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0. Introduction

We establish the Leray–Schauder type theorems for very general classes of
multifunctions, which are called admissible. Our admissible classes contain com-
positions of important multifunctions in nonlinear analysis and algebraic topol-
ogy. Moreover, our arguments are elementary, without using the concept of
degree of maps or theory of homotopy extensions.

The Leray–Schauder principle [LS], one of the most important theorems in
nonlinear analysis, was first proved for a Banach space in the context of degree
theory. In [N], Nagumo extended the degree theory to locally convex topological
vector spaces and his results can be used to generalize the Leray–Schauder prin-
ciple. Variations of the principle were due to Browder [B] for Banach spaces and
to Schaefer [Sc2] for locally convex topological vector spaces without using de-
gree theory. Schaefer’s version has important applications to integral equations.
Later Potter [Po] generalized the results of Browder and Schaefer. However,
those authors considered single-valued maps and adopted boundary conditions
particular to the so-called Leray–Schauder condition (LS). There are many other
authors who obtained generalized versions of the Leray–Schauder type theorems
(see the references).
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Motivated by the works of Potter [Po] and Fitzpatrick and Petryshyn [FP],
we prove two Leray–Schauder type theorems for admissible classes of compact
multifunctions with (LS) without using the degree theory. Our results generalize
many of well-known theorems of this type.

1. Preliminaries

A multifunction or map F : X → 2Y is a function from a set X into the
set 2Y of nonempty subsets of Y ; that is, a function with values Fx ⊂ Y for
x ∈ X and fibers F−y = {x ∈ X : y ∈ Fx} for y ∈ Y . For A ⊂ X, let
F (A) =

⋃
{Fx : x ∈ A}. A map F : X → 2Y is compact provided F (X) is

contained in a compact subset of Y . For any B ⊂ Y , the (lower) inverse of B
under F is defined by

F−(B) = {x ∈ X : Fx ∩B 6= ∅}.

Given two maps F : X → 2Y and G : Y → 2Z , the composition GF : X → 2Z is
defined by (GF )x = G(Fx) for x ∈ X.

For topological spaces X and Y , a map F : X → 2Y is upper semicontinuous
(u.s.c.) if, for each closed set B ⊂ Y , F−(B) is closed in X.

Note that compositions of u.s.c. maps are u.s.c. and that the image of a
compact set under an u.s.c. map with compact values is compact.

Let , Int, and Bd denote the closure, interior, and boundary, resp.
In the sequel, a t.v.s. means a Hausdorff topological vector space. In a t.v.s.,

a convex hull of any finite subset will be called a polytope.
Given a class X of maps, X(X,Y ) denotes the set of maps F : X → 2Y

belonging to X, and Xc the set of finite compositions of maps in X.
A class A of maps is one satisfying the following properties:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each F ∈ Ac is u.s.c. and compact-valued; and
(iii) for any polytope P , each F ∈ Ac(P, P ) has a fixed point.

Examples of A are C, the Kakutani maps K (with convex values), the Aron-
szajn maps M (with Rδ values), the acyclic maps V (with acyclic values), the
O’Neill maps N (with values consisting of one or m acyclic components, where
m is fixed), the approachable maps A in a t.v.s., admissible maps in the sense of
Górniewicz, permissible maps of Dzedzej, and others. For details, see [Gr3] and
[PK].

We introduce two more classes:
F ∈ Aσ

c (X,Y ) ⇔ for any σ-compact subset K of X, there is an F̃ ∈ Ac(K,Y )
such that F̃ x ⊂ Fx for each x ∈ K.

F ∈ Aκ
c (X,Y ) ⇔ for any compact subset K of X, there is an F̃ ∈ Ac(K,Y )

such that F̃ x ⊂ Fx for each x ∈ K.
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Note that A ⊂ Ac ⊂ Aσ
c ⊂ Aκ

c . Any class Aκ
c will be called admissible. For

details and examples, see [P1, PK].
The following recent theorem is due to the author [P2, Theorem 4]:

Theorem 1. Let X be a nonempty convex subset of a locally convex t.v.s.
E, and F ∈ Aσ

c (X,X). If F is compact, then F has a fixed point.

2. Main results

In this section, we prove two Leray–Schauder type theorems for compact
admissible maps.

The following is a fixed point theorem for compact admissible maps satisfying
the Leray–Schauder boundary condition:

Theorem 2. Let E be a locally convex t.v.s., U a convex neighborhood of
the origin 0 of E, and X a convex subset of E containing 0. Then any compact
map F ∈ Aσ

c (U ∩X,X) satisfying

(LS) Fx ∩ {λx : λ > 1} = ∅ for each x ∈ BdXU

has a fixed point.

Proof. Let p be the Minkowski functional of U . Since 0 ∈ IntU , p is
continuous. Define r : E → U by r(x) = x for x ∈ U and r(x) = p(x)−1x for
x /∈ U ; that is,

r(x) = [max{1, p(x)}]−1x for x ∈ E.

Then r is a continuous retraction of E onto U . Moreover, since X is convex and
0 ∈ X, we have r(X) ⊂ X and r(F (U ∩ X)) ⊂ U ∩ X. Define G = rF . Then
G ∈ Aσ

c (U ∩X,U ∩X) and is compact. Therefore, by Theorem 1, there exists
an x ∈ U ∩X such that x ∈ Gx; that is, x = r(y) for some y ∈ Fx. There are
two possibilities: (i) x ∈ IntU or (ii) x ∈ BdXU .

Suppose (i) holds. Then

1 > p(x) = p(r(y)) = [max{1, p(y)}]−1p(y).

Hence p(y) < 1 and this implies r(y) = y. Then x = r(y) = y ∈ Fx.
Suppose (ii) holds. Then

1 = p(x) = p(r(y)) = [max{1, p(y)}]−1p(y).

If p(y) < 1, we have a contradiction. If p(y) > 1, then x = r(y) = p(y)−1y

and y = p(y)x. This contradicts (LS). Thus p(y) = 1, so that r(y) = y and
x = r(y) = y ∈ Fx. This completes our proof.
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Particular forms. 1. For the case X = E, Theorem 2 extends earlier results
of Schaefer [Sc2], Granas [Gr1], Yamamuro [Y], Kaniel [Kn], Powers [Pw], Potter
[Po], Ma [M], Martelli [Mr], Furi–Martelli [FM], Reich [R], and Park [P2] for
particular classes in Aσ

c .
2. For the case of X not necessarily equal to E, Theorem 2 also includes ear-

lier results of Fitzpatrick–Petryshyn [FP], Hahn [H], Granas [Gr2], Górniewicz–
Granas–Kryszewski [GGK], and Kaczyński–Wu [KW].

3. Recently, Granas [Gr3, Theorems 2.2 and 2.3] obtained Theorem 2 for
normed vector spaces for the case X = E. He also gave possible generalizations
of Theorem 2 to coincidence theorems and others.

The following type of theorems are usually known as the Leray–Schauder
principle:

Theorem 3. Let E be a locally convex t.v.s., U a convex neighborhood of
the origin 0 of E, and X a cone of E. Let H ∈ Ac([0, 1] × (U ∩ X), X) be a
compact map such that

(1) x /∈ H(t, x) for t ∈ [0, 1) and x ∈ BdXU ; and
(2) H(0, x) ∩ {λx : λ > 1} = ∅ for x ∈ BdXU .

Then there is a z ∈ U ∩X such that z ∈ H(1, z).

Proof. Consider the maps Hn : U ∩X → 2X , n = 1, 2, . . . , defined by

Hnx =

{
H((1− p(x))/εn, x/p(x)), 1− εn ≤ p(x) ≤ 1,

H(1, x/(1− εn)), p(x) < 1− εn,

where p is the Minkowski functional of U and {εn} is a sequence of real numbers
such that εn → 0 as n→∞ and 0 < εn < 1/2 for all n.

For each n, it is clear that Hn ∈ Ac(U ∩ X,X) and is compact. Also note
that (2) implies

(LS) Hnx ∩ {λx : λ > 1} = ∅ for each x ∈ BdXU.

Now by Theorem 2, for each n, there exists a yn ∈ U ∩X such that yn ∈ Hnyn.
Note that all yn belong to the range of H, which is relatively compact. Let z be
a cluster point of {yn}. Since U ∩X is closed, we have z ∈ U ∩X. Suppose that
infinitely many yn satisfy

(∗) 1 ≥ p(yn) ≥ 1− εn.

Without loss of generality, we may suppose that this is true for all n, and that

tn = (1− p(yn))/εn → t ∈ [0, 1] as n→∞.

Since p(yn) → 1, the point (t, z, z) is a cluster point of the sequence {(tn, yn/p(yn),
yn)} in [0, 1] × (U ∩ X) × (U ∩ X). Since H is u.s.c. and compact, it has the
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closed graph. Hence, yn ∈ H(tn, yn/p(yn)) implies z ∈ H(t, z). This contradicts
(1) since p(z) = lim p(yn) = 1, so that z ∈ BdXU .

Thus (∗) is false and we may assume that p(yn) < 1 − εn for all n. Since
1 − εn → 1 as n → ∞, yn ∈ H(1, yn/(1 − εn)) implies z ∈ H(1, z) by the
closedness of the graph of H. This completes our proof.

Particular forms. For X = E, we have the following particular forms of
Theorem 3.

1. The origin of Theorem 3 is essentially due to Leray and Schauder [LS] for
a Banach space E and f ∈ C in the context of degree theory.

2. Browder [B, Lemma 24] obtained a very particular form of Theorem 3 for
a Banach space E and H = f ∈ C with the boundary condition

(2)′ f(0, x) = 0 for all x ∈ U .

3. Potter [Po, Theorem] extended Browder’s result for the boundary condi-
tion

(2)′′ f({0} × BdU) ⊂ U .

From Theorem 3, we obtain the following:

Corollary 3.1. Let E be a locally convex t.v.s. and F ∈ Ac(E,E) a com-
pact map such that

(∗) H ∈ Ac([0, 1]× E,E), where H(t, x) = tFx for t ∈ [0, 1] and x ∈ E.

Then either, for each λ ∈ (0, 1), there exists an x ∈ E such that x ∈ λFx, or
the set A := {x ∈ E : x ∈ µFx for some µ ∈ (0, 1)} is not bounded.

Proof. Let λ ∈ (0, 1) and G := λF be defined by Gx = λFx for x ∈ E.
Suppose that A is bounded. Then for any open convex neighborhood V of 0,
there exists an r > 0 such that U := rV ⊃ A. Define H ∈ Ac([0, 1]× U,E) by

H(t, x) = tGx for t ∈ [0, 1] and x ∈ U.

Then H is compact. Now we apply Theorem 3 with X = E. We claim that

(1) x /∈ H(t, x) for t ∈ [0, 1) and x ∈ BdU .

In fact, if x ∈ H(t, x) = tGx = (tλ)Fx for some t ∈ (0, 1), then tλ ∈ (0, 1)
and x ∈ A ⊂ U . Since U is open, we should have x /∈ BdU . On the other hand,
if x ∈ H(0, x) = {0}, then x /∈ BdU .

(2) H(0, x) ∩ {λx : λ > 1} = ∅ for x ∈ BdU .

In fact, H(0, x) = {0}. Since x ∈ BdU and U is open, we have x 6= 0 and
λx 6= 0 for λ > 1.

Therefore, by Theorem 3, there is a z ∈ U such that z ∈ H(1, z) = Gz. This
completes our proof.
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Particular forms. 1. Schaefer [Sc1] first obtained Corollary 3.1 for a complete
locally convex t.v.s. E and a completely continuous map ψ : E → E (that is, ψ
is continuous and ψ(nU) is compact for each neighborhood U of 0 and for each
n = 1, 2, . . . ).

2. For F ∈ K(E,E), Corollary 3.1 is due to Šeda [Se, Theorem 2].

From the proof of Corollary 3.1, we have the following:

Corollary 3.2. Let E, F , and H be the same as in Corollary 3.1. Then
either there exists a fixed point of F , or the set {x ∈ E : x ∈ µFx for some
µ ∈ (0, 1)} is not bounded.

Particular form. Górniewicz, Granas, and Kryszewski [GGK, Corollaire
2] obtained Corollary 3.2 for a normed vector space E and a compact map
F : E → 2E such that F |A ∈ Mc(A,E) for each bounded subset A of E.
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(1976), 983–985.

[Gr3] , On the Leray–Schauder alternative, Topol. Methods Nonlinear Anal. 2
(1993), 225–231.

[H] S. Hahn, Fixpunktsätze für mengenwertige Abbildungen in lokalkonvexen Räumen,
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