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Dedicated to Louis Nirenberg on the occasion of his 70th birthday

0. Introduction

Consider the Hamiltonian system

(HS) q̈ + a(t)W ′(q) = 0,

where a and W satisfy

(a1) a(t) is a continuous almost periodic function of t with a(t) ≥ a0 > 0 for
all t ∈ R.

(W1) There is a ξ ∈ R2\{0} such that W ∈ C2(R2\{ξ}, R).
(W2) limx→ξ W (x) = −∞.
(W3) There is a neighborhood N of ξ and U ∈ C1(N\{ξ}, R) such that

|U(x)| → ∞ as x → ξ and

|U ′(x)|2 ≤ −W (x) for x ∈ N\{ξ},

(W4) W (x) < W (0) = 0 if x 6= 0 and W ′′(0) is negative definite.
(W5) There is a constant W0 < 0 such that limx→∞W (x) ≤ W0.

When a is periodic in t and somewhat weaker conditions than (a1) and
(W1)–(W5) are satisfied, it was shown in [17] that (HS) possesses a pair of solu-
tions that are homoclinic to 0 and wind around ξ in a positive and negative sense
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respectively. When R2 is replaced by Rn, n > 2, a(t) ≡ 1, and again weaker
hypotheses than the above are satisfied, the existence of a single homoclinic so-
lution of (HS) was proved by Tanaka [23]. In very recent work, Caldiroli and
Nolasco [7] have shown that when n = 2, a(t) ≡ 1 and W satisfies an additional
symmetry condition, (HS) possesses solutions which wind around ξ a prescribed
number of times.

The goal of this paper is to obtain an analogue of the results of [17] when
a(t) is merely almost periodic. The proof of [17] was based on an elementary
minimization argument. This argument no longer works in the current setting
due to the loss of compactness in going from the case of periodic forcing to
almost periodic a(t). Recently Serra, Tarallo, and Terracini [21] established
the existence of homoclinic solutions for a Hamiltonian system of another type
which was subjected to almost periodic forcing. Using arguments motivated by
and close to their work together with some ideas from [17], it will be shown here
that as in [17], (HS) possesses a pair of homoclinic solutions Q+, Q− winding
around ξ in opposite senses. This will be carried out in §1.

When a(t) is periodic, e.g. with period 1, and Q(t) is a homoclinic solution
of (HS), then so is Q(t − k) for all k ∈ Z. This is no longer the case when a

is almost periodic. However, under (a1), there exists a sequence σk → ∞ as
k →∞ such that

‖a(·)− a(· − σk)‖L∞(R) → 0.

Exploiting this fact, it will be shown in §2 that (HS) possesses infinitely many
homoclinic solutions. In fact, there are such solutions near Q(t− σk) for large k

whenever Q is an isolated local minimizer for a variational problem associated
with (HS). In §3, some technical results used earlier will be treated.

In [18], it was shown that if a(t) is periodic and Q+ or Q− are isolated mini-
mizers of the variational problem that defines them, then there exist multibump
homoclinic solutions of (HS). In a sequel to this paper, it will be shown that
an analogous result obtains in the current setting. Such multibump solutions
require a much more complicated construction than the simple arguments of §2
here.

There have been several other papers in recent years which use variational
methods to find basic homoclinic or heteroclinic solutions of Hamiltonian systems
and which also construct multibump solutions for periodically forced Hamilton-
ian systems. See e.g. Coti Zelati, Ekeland and Séré [8], Séré [19–20], Coti Zelati
and Rabinowitz [9–10], Bessi [2], Bolotin [4], Bertotti and Bolotin [1], Caldiroli
and Montecchiari [6], Montecchiari and Nolasco [14], and Strobel [22]. Moreover,
in recent work, Buffoni and Séré [5] have obtained multibump for an autonomous
Hamiltonian system.
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1. A pair of homoclinics

In this section, a pair of solutions of (HS) which are homoclinic to 0 will
be obtained as critical points of a corresponding functional. To formulate the
variational problem, let E = W 1,2(R, R2) under its usual norn ‖ · ‖ and

Λ = {q ∈ E | q(t) 6= ξ for all t ∈ R}.

Set V = aW , L(q) = 1
2 |q̇|

2 − V (t, q), and

(1.1) I(q) =
∫

R
L(q) dt.

For what follows, even if not explicitly stated, it will always be assumed that
(a1) and (W1)–(W5) hold.

Proposition 1.2. If (a1) and (W1)–(W5) are satisfied, for any M > 0,
there is a κ(M) > 0 such that if q ∈ E and I(q) ≤ M , then |q(t) − ξ| ≥ κ(M)
for all t ∈ R.

Proof. This result is essentially due to Gordon [11] who obtained it in a
different setting. It is here that hypotheses (W2)–(W3) play their role. The proof
is essentially the same as the related argument given in Theorem 2.7 of [17] and
will be omitted.

The next result gives the smoothness of I on Λ.

Proposition 1.3. If (a1) and (W1)–(W5) are satisfied, then I ∈ C1(Λ, R).

Proof. This is proved as in Proposition 1.1 of [9] and will be omitted.

Remark. In fact, I ∈ C2(Λ, R) although the additional smoothness will not
be employed.

Proposition 1.4. If (a1) and (W1)–(W5) are satisfied, q ∈ Λ and I ′(q) =
0, i.e. q is a critical point of I on Λ, then q is a classical solution of (HS) with
|q(t)|, |q̇(t)| → 0 as |t| → ∞.

Proof. If q ∈ E, standard embedding theorems imply |q(t)| → 0 as |t| → ∞.
If q is a critical point of I, it is a weak solution of (HS) and then standard
“elliptic” arguments show it is a classical solution of (HS). Finally, using (HS),
(a1), (W1) and (W4) as in [17] shows q̇ ∈ E and therefore |q̇(t)| → 0 as |t| → ∞.

By Propositions 1.2 and 1.4, to find solutions of (HS) homoclinic to 0, it
suffices to find critical points of I on Λ. Towards that end, observe that as has
already been noted above, if q ∈ Λ and I(q) < ∞, then q(t) → 0 as |t| → ∞.
Hence q(R) is a closed curve in R2\{ξ} and as such possesses a winding number
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with respect to ξ, WN(q), which equals its Brouwer degree with respect to ξ,
d(q). Let

(1.5) Γ = {q ∈ Λ | d(q) 6= 0} = Γ+ ∪ Γ−,

where Γ± = {q ∈ Γ | ±d(q) > 0}. Set

(1.6) c± = inf
q∈Γ±

I(q).

Proposition 1.7. c± ≥ c0 > 0.

Proof. Each q ∈ Γ± has a subloop starting in the sphere {|x| = |ξ|/2},
crossing the ray {sξ | s ≥ 1} and returning to {|x| = |ξ|/2}. It is shown in [17]
that this gives a lower bound c0 for I(q).

In [17], it was shown that when V is periodic in t, there exist functions
Q± ∈ Γ± such that I(Q±) = c± and Q± are critical points of I. The proof relies
heavily on the fact that if V is e.g. 1-periodic in t, j ∈ Z, and q ∈ Λ, and if we
set

(1.8) τjq(t) ≡ q(t− j),

then

(1.9) I(τjq) = I(q).

Unfortunately, (1.9) is no longer valid under hypothesis (a1). However, the
definition of almost periodicity (see e.g. [21] or [3]) implies there is a sequence
(σm) ⊂ R such that σm →∞ and

(1.10) ‖τσma− a‖L∞(R) → 0

as m →∞. This fact will play an important role here.
To continue, let M > 0 and

IM = {w ∈ Λ | I(w) ≤ M}.

Bounds needed for IM are provided by the next result.

Proposition 1.11. If M > 0 and q ∈ IM , then there is an ω(M) > 0 such
that ‖q‖ ≤ ω(M).

Proof. If q ∈ M , by (1.1) and (a1), (W4),

(1.12) ‖q̇‖2L2 ≤ 2M

so all that is needed is a bound for q in L2. By (W4), there is a β > 0 such that

(1.13) W ′′(0)(y, y) ≥ 2β|y|2
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for y ∈ R2. Hence there is a δ > 0 such that for 0 ≤ |y| ≤ δ,

(1.14) −W (y) ≥ β|y|2.

Consequently, if q ∈ IM is fixed and

S(δ) = {t ∈ R | |q(t)| > δ} and Ŝ(δ) = {t ∈ R | |q(t)| ≤ δ},

then

(1.15) M ≥ a0β

∫
bS(δ)

|q|2 dt−
∫

S(δ)

aW (q) dt.

Let

(1.16) γ = γ(δ) = inf
|x|≥δ

−W (x).

Then

(1.17) M ≥ a0β

∫
bS(δ)

|q|2 dt + a0γ(δ) meas S(δ).

For t ∈ S(δ), δ ≤ |q(t)| ≤ ‖q‖L∞ . Therefore by a slight variant of Lemma
3.6 of [16],

(1.18) M ≥ I(q) ≥
√

2a0γ(δ) |q(s)− q(s)|,

where |q(s)| = δ and |q(s)| = ‖q‖L∞ . Now (1.18) provides an L∞ bound for q:

(1.19) ‖q‖L∞ ≤
M +

√
2a0γ(δ) δ√

2a0γ(δ)
≡ M1.

Therefore by (1.17) and (1.19),∫
R
|q|2 dt ≤

∫
bS(δ)

|q|2 dt +
∫

S(δ)

|q|2 dt(1.20)

≤ Ma−1
0 (β−1 + M2

1 γ−1)

and Proposition 1.11 is proved.

The first existence result for (HS) can now be formulated. It provides ho-
moclinic solutions of (HS) which may not belong to Γ. A slight variant of an
argument from [21] is used to obtain the theorem. In particular, the following
technical result whose proof is postponed until §3 is required. Its statement is
essentially the same as the analogous result in [21].



54 P. H. Rabinowitz

Proposition 1.21. Suppose (pm) ⊂ Λ, I(pm) → b > 0 and I ′(pm) → 0 as
m →∞ (i.e. (pm) is a Palais–Smale sequence for I). If in addition

(1.22) ‖pm − pm−1‖ → 0

as m →∞, then there is a sequence (θm) ⊂ R and an r > 0 such that

(1.23) lim
m→∞

|τθm
pm(0)| ≥ r

and

(1.24) |θm − θm−1| → 0

as m →∞.

Now we have

Theorem 1.25. Suppose (a1) and (W1)–(W5) are satisfied. Let q ∈ Γ.
Then there exists a homoclinic solution Q ∈ Λ of (HS) with I(Q) ∈ (0, I(q)].

Proof. If I ′(q) = 0, the result obtains with Q = q. Thus suppose I ′(q) 6= 0.
Let V(x) be a locally Lipschitz continuous pseudogradient vector field for I, i.e.
V is locally Lipschitz continuous on Ê = {y ∈ E | I ′(y) 6= 0} and satisfies

(1.26)
(i) ‖V(x)‖ ≤ 2‖I ′(x)‖,
(ii) I ′(x)V(x) ≥ ‖I ′(x)‖2.

For the existence of such a V, see e.g. Lemma A.2 of [15].
Consider the ordinary differential equation in E:

(1.27)
dη

ds
= − V(η)

1 + ‖V(η)‖
≡ −W(η)

with η(0) = q. Then W is locally Lipschitz continuous on Ê and ‖W(x)‖ ≤ 1
for all x ∈ Ê. Therefore the solution of (1.27) exists for all s > 0 (see e.g. [15])
and by (1.26)(ii),

(1.28)
dI(η(s))

ds
= −I ′(η(s))W(η(s)) < 0.

Since η(0) ∈ Γ, Proposition 1.2 and (1.28) show η(s) ∈ Γ for all s > 0. Hence by
(1.28), (1.6) and Proposition 1.7,

(1.29) inf
s≥0

I(η(s)) = lim
s→∞

I(η(s)) ≥ c± > 0

depending on whether q ∈ Γ+ or Γ−. Let sm → ∞ as m → ∞ and further
satisfy

(1.30) |sm − sm−1| → 0
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as m → ∞. By a corollary to Ekeland’s Theorem (see Mawhin–Willem [13],
Corollary 4.1) there is a sequence ϕm →∞ as m →∞ such that

|ϕm − sm| → 0,(1.31)

I(η(ϕm)) ≤ I(η(sm))(1.32)

and
d

ds
I(η(ϕm)) → 0(1.33)

as m →∞. Set qm = η(ϕm). Then by (1.33) and (1.26)(ii),

(1.34) I ′(qm) → 0

as m →∞. Hence by (1.27) and (1.30)–(1.31),

(1.35) ‖qm − qm−1‖ ≤
∥∥∥∥∫ ϕm

ϕm−1

dη

ds
ds

∥∥∥∥ ≤ |ϕm − ϕm−1| → 0

as m → ∞. Consequently, (ϕm) satisfies the hypotheses of Proposition 1.21.
Therefore there is a sequence (θm) ⊂ R and an r > 0 such that

(1.36) lim
m→∞

|τθm
qm(0)| ≥ r

and

(1.37) |θm − θm−1| → 0

as m →∞.
Suppose θm has a bounded subsequence. Then along a further subsequence,

θm → θ. Moreover, I(qm) < I(q) by (1.28). Therefore by Proposition 1.11, (qm)
is bounded. Hence there is a Q ∈ Λ such that qm converges to Q weakly in E

and strongly in L∞loc along a subsequence. Thus

(1.38) I ′(qm)ϕ → I ′(Q)ϕ

for all ϕ ∈ C∞0 (R, R2) and by (1.34),

(1.39) I ′(Q)ϕ = 0.

Moreover, by (1.36), τθQ(0) 6= 0. Consequently, Q is a nontrivial homoclinic
solution of (HS) and Theorem 1.25 is proved for this case.

Next suppose (θm) does not have a bounded subsequence. Set vm = τθm
qm.

Since a is almost periodic, there is an unbounded sequence σm (in the same
direction as θm) such that

(1.40) ‖τ−σm
a− a‖L∞ → 0.

Choose a subsequence (θmk
) of (θm) satisfying

(1.41) |θmk
− σk| → 0
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as k → ∞. This is possible via (1.37). The functions (qm) and therefore (vm)
are bounded in Λ as in the previous case. Consequently, there is a Q ∈ Λ such
that along a subsequence, vmk

converges to Q weakly in E and strongly in L∞loc.
By (1.36), Q(0) 6= 0. Moreover,

(1.42) ‖τ−θmk
a− a‖L∞ ≤ ‖τ−θmk

a− τ−σk
a‖L∞ + ‖τ−σk

a− a‖L∞ → 0

as k →∞ via (1.40)–(1.41). Note also that if ϕ ∈ C∞0 (R, R2),

I ′(Q)ϕ =
∫

R
(Q̇ · ϕ̇−W ′(Q) · ϕ) dt(1.43)

= lim
k→∞

∫
R
(v̇mk

· ϕ̇− aW ′(vmk
) · ϕ) dt

= lim
k→∞

∫
R
(q̇mk

· τ−θmk
ϕ̇− (τ−θmk

a)W ′(qmk
) · τ−θmk

ϕ) dt = 0

by (1.42), (1.30), the L∞ bounds on qmk
provided by Proposition 1.11 and the

lower bounds for |qmk
(t)− ξ| given by Proposition 1.2. This completes the proof

of Theorem 1.25.

It is natural to ask whether the solution Q obtained above lies in Γ. We do
not know whether this is the case in the generality of Theorem 1.25. However,
the next theorem shows that Q ∈ Γ± if I(q) is close enough to c±. A preliminary
result is needed first.

Lemma 1.44. There is a % > 0 such that if w ∈ Λ\{0} is a solution of
(HS), then ‖w‖L∞ > %.

Proof. By (W4), there are constants %, β > 0 such that if |x| ≤ %, then

(1.45) −W ′(x) · x ≥ β|x|2.

Suppose w ∈ Λ\{0} is a solution of (HS) with ‖w‖L∞ ≤ %. Then

(1.46) 0 = I ′(w)w =
∫

R
(|ẇ|2 − aW ′(w) · w) dt ≥

∫
R
(|ẇ|2 + aβ|w|2) dt > 0,

a contradiction.

Theorem 1.47. Suppose (a1) and (W1)–(W5) are satisfied. Then there is
an ε0 > 0 such that whenever q ∈ Γ± with

(1.48) I(q) < c± + ε0,

then the solution, Q, of (HS) given by Theorem 1.25 lies in Γ± and I(Q) ∈
[c±, I(q)].

Proof. The + case will be proved using an argument from [17]. If Q 6∈ Γ+,
then d(Q) ≤ 0. Let δ ∈ (0, %/2), with % given by Lemma 1.44. Since Q ∈ E,
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there is a T = T (δ) > 0 such that for |t| ≥ T ,

(1.49) |Q(t)| ≤ δ.

Let Qk(t) = qk(t) if Q was obtained via Case 1 of the proof of Theorem 1.25;
set Qk(t) = vmk

(t) if Case 2 obtains. It can be assumed that Qk converges to Q

uniformly for |t| ≤ T + 1 as k →∞. Note that

(1.50) 0 < d(Qk) = WN(Qk|−T−1
−∞ ) + WN(Qk|T+1

−T−1) + WN(Qk|∞T+1)

and

(1.51) WN(Qk|T+1
−T−1) → WN(Q|T+1

−T−1)

as k → ∞. Moreover, since d(Q) ≤ 0, by (1.49), the right hand side of (1.51)
is near a nonpositive integer. Consequently, the first or third term on the right
hand side of (1.50) is near a positive integer since Qk(±∞) = 0 and Qk(±(T +1))
is within δ of 0. The argument for either case is similar so suppose WN(Qk|−T−1

−∞ )
is near a positive integer. Define a new function

(1.52) q̂k(t) =


Qk(t), t ≤ −T − 1,

0, t ≥ −T,

−(t + T )Qk(t), −T − 1 < t < −T.

Then d(q̂k) ≥ 1 so q̂k ∈ Γ+. For the case of Qk = qk,

I(q̂k) = I(Qk) +
∫ −T

−T−1

L(q̂k) dt−
∫ ∞

−T−1

L(Qk) dt(1.53)

< c+ + ε0 −
∫ T+1

−T−1

L(Qk) dt + O(δ2)

as δ → 0. Since Qk converges to Q ∈ Λ uniformly for t ∈ [−T − 1, T + 1], by
Lemma 1.44, in this interval the curve Qk passes from ∂D2δ(0), the sphere of
radius 2δ about 0 in R2, to ∂D%(0) and ultimately back to ∂D2δ(0). Therefore
as in (1.18), by Lemma 3.6 of [16],

(1.54) c+ + ε0 > I(Qk) ≥
∫ T+1

−T−1

L(Qk) dt ≥ 2

√
2a0γ

(
%

2

)
%

2
≡ ε1,

where γ is as in (1.16). Combining (1.53)–(1.54) gives

(1.55) I(q̂k) < c+ + ε0 + O(δ2)− ε1

as δ → 0. Hence choosing ε0 = ε1/2 and δ sufficiently small shows

(1.56) I(q̂k) < c+,

contrary to q̂k ∈ Γ+. Thus Q ∈ Γ+, I(Q) ≥ c+, and this case is proved.
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Next suppose Qk = vmk
= τθmk

qmk
. Then

(1.57) I(Qk) = I(τθmk
qmk

) +
∫

R
(a− τ−θmk

a)W (qmk
) dt < c+ + ε0

for large k due to the uniform L∞ bounds on (qmk
) given by Proposition 1.11

and the estimate (1.42). Consequently, this case follows in a similar fashion to
the previous one and Theorem 1.47 is proved.

Remark 1.58. If in Theorem 1.47, q ∈ Γ±, c± < I(q) < c±+ε and I ′(q) 6= 0,
then I(Q) ∈ [c±, I(q)).

2. Some multiplicity results

At this point, the existence of homoclinic solutions of (HS) in Γ± has been
obtained. The multiplicity of such solutions will be studied in this section. It
will be shown that each of Γ+, Γ− contains infinitely many homoclinic solutions
of (HS). In fact, stronger results hold. To make a more precise statement, let

K = {q ∈ Λ\{0} | I ′(q) = 0},

i.e. K is the set of nontrivial solutions of (HS) that are homoclinic to 0. Set

Q± = K ∩ Γ± ∩ Ic±+ε0 .

Then we have:

Theorem 2.1. If (a1) and (W1)–(W5) hold, then Q+, Q− are each infinite
sets.

Proof. It will be proved that Q+ is an infinite set. Suppose the result is
false. By Theorem 1.47, for each q ∈ Ic++ε0 , there is a corresponding solution
Q of (HS) in Q+ with c+ ≤ I(Q) ≤ I(q). Therefore the set of such functions
Q is finite: Suppose there are j distinct Q’s: Q1, . . . , Qj . Each Qi must be
an isolated critical point of I. It can be assumed that I(Q1) ≤ . . . ≤ I(Qj).
Then I(Q1) = c+ for otherwise there would exist another solution Q in Q+ with
c+ ≤ I(Q) < I(Q1). The function Q1 is a global minimizer of I (in Γ+) and also
an isolated critical point of I.

These properties of Q1 yield infinitely many critical points of I in Q+ by
means of the following result which is of independent interest. For x ∈ E, let
B%(x) denote the open ball of radius % about x.

Theorem 2.2. If P is a local minimizer and an isolated critical point of I,
and (σk) is as in (1.40), then there is an r0 > 0 and k0 = k0(r) ∈ N defined for
0 < r ≤ r0 such that I has a local minimum in Br(τσk

P ) for all k ≥ k0.

Remark. Note that if (HS) is autonomous, P cannot be an isolated critical
point of I since τθP is also a critical point for all θ ∈ R. Hence dependence on t

of a(t) is a necessary condition for P to be isolated.
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Assume Theorem 2.2 for the moment.

Completion of proof of Theorem 2.1. Set P = Q1 in Theorem 2.2.
Since d(τσk

Q1) = d(Q1) we have τσk
Q1 ∈ Γ+. Moreover, for r0 small (indepen-

dently of k), if q ∈ Br(τσk
Q1), then d(q) = d(τσk

Q1). Therefore Br(τσk
Q1) ⊂

Γ+. Consequently, the local minimum, Qk, of I in Br(τσk
Q1) given by Theorem

2.2 lies in Γ+ for all k ≥ k0(r). Moreover, if q ∈ Br(τσk
Q1), writing q = τσk

v

where v ∈ Br(Q1) and arguing as in (1.57) shows

(2.3) I(q) = I(v) +
∫

R
(a− τ−σk

a)W (q) dt < c+ + ε0

for r0 sufficiently small and k ≥ k0(r). Therefore Qk ∈ Ic++ε0 and Theorem 2.1
is proved.

To prove Theorem 2.2, some additional preliminaries are needed. Let H(a)
denote the hull of the almost periodic function a, i.e. the closure (under ‖ · ‖L∞)
of the set of all uniform limits of translates of a. (We recall that by a theorem of
Bochner, a is almost periodic if and only if H(a) is compact. See e.g. [12].) Note
that for each h ∈ H(a), h(t) ≥ a0 for all t ∈ R. Corresponding to each such h is
a Hamiltonian system of the form

(HS)h q̈ + hW ′(q) = 0

with associated functional

(2.4) Ih(q) =
∫

R

(
1
2
|q̇|2 − hW (q)

)
dt.

Let

Kh = {q ∈ Λ\{0} | I ′h(q) = 0},

the set of nontrivial critical points of Ih in Λ or equivalently the set of nontrivial
solutions of (HS)h which are homoclinic to 0. Finally, set

(2.5) K∗ =
⋃

h∈H(a)

Kh .

Remark 2.6. The argument of Lemma 1.44 shows that the % obtained there
can be chosen so that ‖q‖L∞ > % for all q ∈ K∗.

To continue, it is essential to understand the behavior of Palais–Smale se-
quences for I. The next proposition provides this information.

Proposition 2.7. Let (xm) ⊂ Λ satisfy I(xm) → b > 0 and I ′(xm) → 0.
Then there is a j = j(b) ∈ N, v1, . . . , vj ∈ K∗, and sequences (k1

m), . . . , (kj
m) ⊂
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R such that along a subsequence, as m →∞,

(2.8)
∥∥∥∥xm −

j∑
i=1

τki
m

vi

∥∥∥∥ → 0,

(2.9) |ki
m − kp

m| → 0 if i 6= p,

and

(2.10)
j∑

i=1

Ihi
(vi) = b, where vi ∈ Khi

.

The proof of Proposition 2.7 is similar to related results in e.g. [18], [20], [21]
and will be discussed in §3.

An important consequence of Proposition 2.7 is:

Proposition 2.11. If P is a local minimum and an isolated critical point
of I, there is an r1 > 0 and δ = δ(r, r) > 0 such that if 0 < r < r ≤ r1 and
x ∈ Br(P )\Br(P ), then ‖I ′(x)‖ ≥ 2δ.

Proof. Choose r1 so that

(2.12) K ∩Br1(P ) = {P}.

If Proposition 2.11 is false, there is a sequence (xm) ⊂ Br(P )\Br(P ) such that
I ′(xm) → 0. The form of I shows it is bounded on bounded subsets of E which
avoid ξ and this is the case here for r1 sufficiently small. Therefore (xm) can be
assumed to be a Palais–Smale sequence. Applying Proposition 2.7, if j > 1, by
(2.8)–(2.9),

(2.13)
∥∥∥∥P −

j∑
i=1

τki
m

vi

∥∥∥∥ ≤ 2r ≤ 2r1

while

(2.14) lim
m→∞

∥∥∥∥P −
j∑

i=1

τki
m

vi

∥∥∥∥ ≥ min
1≤i≤j

‖vi‖ ≥ inf
v∈K∗

‖v‖ ≥ 1
2

inf
v∈K∗

‖v‖L∞ ≥ %

2
.

Hence if 4r1 < %, then j > 1 is impossible. Therefore j = 1. If (k1
m) is un-

bounded, (2.8)–(2.9) again show

(2.15) 2r0 ≥
%

2
.

Consequently, (k1
m) is bounded so without loss of generality it can be assumed

that k1
m → k. Hence by (2.8), xm → τkv1 as m → ∞ and I ′(τkv1) = 0. Then

τkv1 ∈ K, contrary to (2.12) unless τkv1 = P . But (xm) ⊂ Br(P )\Br(P ) so
xm → P as m → ∞ cannot occur. Therefore there exists a δ = δ(r, r) as
claimed.
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Corollary 2.16. Let (σk) be as in (1.40). Then there is a k1 = k1(r, r)
such that for all k ≥ k1,

(2.17) ‖I ′(x)‖ ≥ δ(r, r), x ∈ Br(τσk
P )\Br(τσk

P ).

Proof. Let ϕ ∈ E with ‖ϕ‖ = 1 and let y ∈ Br(P )\Br(P ). Then if
x = τσk

y,

I ′(x)ϕ =
∫

R
(ẋ · ϕ̇− aW ′(x) · ϕ) dt(2.18)

= I ′(y)τ−σk
ϕ +

∫
R
(a− τ−σk

a)W ′(y) · τ−σk
ϕ dt

≥ I ′(y)τ−σk
ϕ− ‖a− τ−σk

a‖L∞

( ∫
R
|W ′(y)|2 dt

)1/2

.

Hence (2.17) follows from (2.18), Proposition 2.11, (1.40), and the boundedness
of ‖W ′(y)‖L2 on Br0(P ).

With the above preliminaries in hand, we are ready for the

Proof of Theorem 2.2. Note first that the infimum of I over Br/2(τσk
P )

is achieved for all k ∈ Z. Indeed, any minimizing sequence (xm) for

inf
Br/2(τσk

P )
I

is bounded via Proposition 1.11. Therefore it converges weakly in E and strongly
in L∞loc to z ∈ Br(τσk

P ). Writing I as

I(x) =
1
2
‖x‖2 −

∫
R

(
1
2
|x|2 + a(t)W (x)

)
dt

shows, for any l > 0,

I(xm) ≥ 1
2
‖xm‖2W 1,2[−l,l] −

∫ l

−l

(
1
2
|xm|2 + a(t)W (xm)

)
dt

via (W4). Therefore

(2.19) lim
m→∞

I(xm) ≥ 1
2
‖z‖2W 1,2[−l,l] −

∫ l

−l

(
1
2
|z|2 + a(t)W (z)

)
dt.

Since (2.19) holds for all l > 0,

(2.20) lim
m→∞

I(xm) ≥ I(z)

and z minimizes I in Br/2(τσk
P ).

Suppose that I does not possess an interior minimum in Br/2(τσk
P ). Then

z ∈ ∂Br/2(τσk
P ). Consider the ordinary differential equation

(2.21)
dη

ds
= −V(η), η(0) = z,
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where V is a locally Lipschitz continuous pseudogradient vector field for I on Ê.
For any s > 0 for which η(s) is defined,

(2.22)
d

ds
I(η(s)) = −I ′(η(s))V(η(s)) < 0

via (1.26)(ii). Hence η(s) 6∈ Br/2(τσk
P ) since I(η(s)) < I(z) ≤ I(x) for all

x ∈ Br/2(τσk
P ). Let δ = δ(r, r/2) as given by Corollary 2.16. Then for all s for

which η(s) ∈ Br(τσk
P )\Br/2(τσk

P ), by (1.26)(ii),

(2.23)
d

ds
I(η(s)) ≤ −δ2.

Since I(x) ≥ 0 for all x ∈ E, (2.23) implies that after a finite time T , η(s) reaches
∂Br(τσk

P ) and

r

2
≤ ‖η(T )− η(0)‖ =

∥∥∥∥∫ T

0

dη

ds
ds

∥∥∥∥(2.24)

≤
∫ T

0

‖V(η(s))‖ ds ≤ 2
∫ T

0

‖I ′(η(s))‖ ds

via (1.26)(i). On the other hand, by (1.26)(ii) again,

I(η(0))− I(η(T )) =
∫ 0

T

dI

ds
(η(s)) ds =

∫ T

0

I ′(η(s))V(η(s)) ds(2.25)

≥
∫ T

0

‖I ′(η(s))‖2 ds ≥ δ

∫ T

0

‖I ′(η(s))‖ ds.

Combining (2.24)–(2.25) yields

(2.26) I(τσk
P )− I(η(T )) ≥ I(z)− I(η(T )) ≥ δr/4.

Now η(T ) = τσk
xk for some xk ∈ ∂Br(P ). Hence

(2.27) I(τσk
xk) ≤ I(τσk

P )− δr/4

and as in (1.57), for k ≥ k0(r),

(2.28) I(τσk
P ) ≤ I(P ) + δr/16.

Therefore

(2.29) I(τσk
xk) ≤ I(P )− 3δr/16.

As in (1.57) again,

(2.30) I(τσk
x)− I(x) ≤ ‖a− τ−σk

a‖L∞

∫
R
|W (x)| dt.

Since Br(P ) is a bounded set in E all members of which avoid ξ, as earlier it
can be assumed that if k ≥ k0(r) and x ∈ Br(P ),

(2.31) |I(τσk
x)− I(x)| ≤ δr/8.
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Therefore by (2.31) and (2.29),

(2.32) I(xk) ≤ I(P )− δr/16.

But P is a strict local minimum for I in Br(P ). Therefore (2.32) is impossible
and Br/2(τσk

P ) must contain a local minimum of I for all large k. The proof of
Theorem 2.2 is complete.

We conclude this section with a final observation. Let (ym) be a minimizing
sequence for (1.6), e.g. for the + case. Then by a simple variant of Lemma 1.44
(using (W4)), ‖ym‖L∞ ≥ %1 > 0. Since |ym(t)| → 0 as |t| → ∞, there exists
a Tm ∈ R such that |ym(Tm)| ≥ %1. If (Tm) possesses a bounded subsequence,
earlier arguments show there is a subsequence of ym which converges weakly in
E to Q ∈ E\{0} satisfying I(Q) ≤ c+. A further argument as in the proof of
Theorem 1.47 or [17] implies Q ∈ Γ+ and therefore I(Q) = c+. If on the other
hand, (Tm) is unbounded, by setting vm = τ−Tm

ym, it follows as above that vm

converges along a subsequence to a function Q ∈ E\{0} with Ih(Q) ≤ c+ and
h = lim τ−Tma, the limit being taken along a subsequence. It is not difficult to
see that

inf
Γ+

Iϕ = inf
Γ+

I

for all ϕ ∈ H(a). Therefore if Q ∈ Γ+, then Ih(Q) = c+. To prove that Q ∈ Γ+,
note that d(vm) = d(ym) > 0 so vm ∈ Γ+. Then arguing once again as in
Theorem 1.47 or in [17] yields Q ∈ Γ+.

These remarks show there always is an h± ∈ H(a) and Q± ∈ Γ± such that
Ih±(Q±) = c±. If Q± is an isolated critical point of Ih, Theorem 2.2 applies to
it. However, a priori Q± may not be an isolated point of Ih.

3. Technical results

This section deals with Proposition 1.21 and Proposition 2.7. The statement
of Proposition 1.21 is the same as that of Proposition 3.13 of [21] although the
technical frameworks of the two results are different. In [21], Serra, Tarallo, and
Terracini consider a Hamiltonian system of the form

(3.1) q̈ − q + a(t)G′(q) = 0,

where q ∈ Rn, a(t) satisfies (a1), and G ∈ C2 is a superquadratic potential, i.e.

(G1) There is a θ > 2 such that

0 < θG(x) ≤ x ·G′(x)

for all x ∈ Rn\{0}.
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Thus G is a rather different nonlinearity than W . Nevertheless (3.1) and (HS)
have several common features that make the proof of Proposition 1.21 nearly
identical with that of Proposition 3.13 of [21]. The proof of the latter requires
several pages of work. Therefore rather than repeat this argument here, those
properties for (HS) that combined with [21] allow for the same proof will be
indicated.

One of the important ingredients in obtaining Proposition 1.21 is Proposition
2.7. For the proof of this latter result note first that if h ∈ H(a), then a(t) ≥
a0 > 0. Therefore for small x ∈ E,

Ih(x) =
∫

R

(1
2
|ẋ|2 − hW (x)

)
dt(3.2)

=
∫

R

(1
2
|ẋ|2 +

h

2
W ′′(0)(x, x)

)
dt + o(‖x‖2)

≥ 1
2

min(1, a0)‖x‖2.

Combining (3.2) with Remark 2.6 shows for any h ∈ H(a),

(3.3) Ih(Kh) ≥ c0 > 0,

where c0 is independent of h. Lastly, observe that by Proposition 1.11, a Palais–
Smale sequence for I (or Ih) is bounded in E. With these observations, the proof
of Proposition 2.7 proceeds as in [21], Proposition 2.16, or in [18] or [20].

Remark 3.4. Actually, [21] states the result for sequences (xm) which con-
verge weakly to 0. If (xm) converges weakly to v 6= 0, the proof of Proposition
2.7 shows that v1 ∈ Ka = K and k1

m can be taken to be 0 for all m.

Next let

M =
⋃
n∈N

{ n∑
i=1

|τθi
vi(t)|2

∣∣∣∣ vi ∈ K∗ and θi ∈ R
}

.

Suppose ϕ =
∑n

i=1 |τθi
vi(t)|2 ∈M. Then vi ∈ Kai

, and

ϕ′′(t) = 2
n∑

i=1

|τθi
v̇i(t)|2 + 2

m∑
i=1

τθi
vi(t) · τθi

v′′i (t)(3.5)

= 2
n∑

i=1

|τθi v̇i(t)|2 − 2
n∑

i=1

τθivi(t) · τθiϕi(t)W ′(τθivi(t)).

Let ε1 be such that

(3.6) a0ε1 < 1.

By (W4), there is a %2 > 0 such that if |x| <
√

2%2, then |W ′(x)| ≤ ε1|x|. Thus
if

(3.7) 0 < ϕ(t) < 2%2,
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by the definition of ϕ, |τθi
vi(t)| ≤

√
2%2 and |W ′(τθi

vi(t))| ≤ ε1|τθi
vi(t)|. There-

fore when (3.7) holds,

(3.8) ϕ′′(t) ≥ 2(1− a0ε1)ϕ(t).

Consequently, ϕ cannot have a local maximum when (3.7) holds.
With this observation, we have all of the ingredients needed to complete the

proof of Proposition 1.21 as in [21].
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