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EXISTENCE AND LOCALIZATION OF SOLUTIONS
OF SECOND ORDER ELLIPTIC PROBLEMS USING LOWER

AND UPPER SOLUTIONS IN THE REVERSED ORDER

Patrick Habets — Pierpaolo Omari

1. Introduction

Consider the semilinear elliptic problem

(1.1) Lu = f(x, u) in Ω, Bu = 0 on ∂Ω,

where Ω is a bounded domain in RN ,L is a linear second order elliptic opera-
tor for which the maximum principle holds, B is a linear first order boundary
operator and f is a nonlinear Carathéodory function.

We are concerned with the solvability of (1.1) in presence of lower and upper
solutions. A classical basic result in this context says that if α is a lower solution
and β is an upper solution satisfying

(1.2) α(x) ≤ β(x) for all x ∈ Ω,

then problem (1.1) has at least one solution u such that

(1.3) α(x) ≤ u(x) ≤ β(x) for all x ∈ Ω.

1991 Mathematics Subject Classification. 35J25, 35J65, 34B15.

Research supported by EC Human Capital and Mobility Program No ERB4050PL932427

“Nonlinear boundary value problems: existence, multiplicity and stability of solutions”.

Research of the first author supported by GNAFA-CNR.

Research of the second author supported by MURST (40% and 60% funds).

c©1996 Juliusz Schauder Center for Nonlinear Studies

25



26 P. Habets — P. Omari

In this paper, we want to discuss the situation where α and β satisfy the opposite
ordering condition

(1.4) α(x) > β(x) for all x ∈ Ω.

The problem of the solvability of (1.1) in this frame was explicitly raised in
the early seventies in [31] and became the subject of some works in the last
two decades [4], [30], [20], [21], [29]. We point out that there are some concrete
motivations to study this question. Indeed, it was observed in [27] that condition
(1.2) turns out to be quite restrictive in some cases. For instance, if we denote
by λ1 the principal eigenvalue of the problem

Lu = λu in Ω, Bu = 0 on ∂Ω,

and we assume that

(1.5) ess inf
Ω×R

∂f

∂s
(x, s) > λ1,

then, for any pair of lower and upper solutions α, β satisfying (1.2), we find that
they must already be solutions and α = β (see also [10]). Hence, such upper and
lower solutions seem inappropriate to deal with the case where f lies in some
sense to the right of the first eigenvalue λ1. However, in this situation, lower
and upper solutions α, β satisfying the opposite ordering condition (1.4) arise
naturally. As a very simple example, one can show that condition (1.5) implies
the existence of such a pair of lower and upper solutions. We refer to Section 2
for a detailed discussion of the circumstances which give rise to lower and upper
solutions satisfying (1.4).

However, it was pointed out by an example in [3] that, in general, the mere
existence of a lower solution and an upper solution for which (1.4) holds is not
sufficient to guarantee the solvability of (1.1). The example is essentially of the
type

(1.6) −∆u = λmu + ϕm in Ω, u = 0 on ∂Ω,

where λm is an eigenvalue of −∆ on H1
0 (Ω) greater than λ1 and ϕm is a cor-

responding nonzero eigenfunction. It is easily seen that (1.6) has no solution,
although one can construct a lower solution α and an upper solution β, as mul-
tiples of the first eigenfunction ϕ1, which satisfy

β(x) < 0 < α(x) for all x ∈ Ω.

These considerations suggest that, in order to achieve the solvability, one
should prevent the interference of f with the higher part of the spectrum. This
can be expressed in various ways. In [4], where the first important contribution
to this problem was given, it was proved that the existence of a lower solution
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α and of an upper solution β (not necessarily satisfying any ordering condition)
implies the solvability of (1.1), provided that

ess sup
Ω×R

|f(x, s)− λ1s| < ∞.

More recently, when L is selfadjoint and B is either the Dirichlet or the Neu-
mann boundary operator, the above mentioned result was generalized in [21] to
unbounded perturbations of λ1s, satisfying

(1.7) lim inf
|s|→∞

f(x, s)/s ≥ λ1 uniformly a.e. in Ω,

and

(1.8) lim sup
|s|→∞

f(x, s)/s ≤ γ(x) uniformly a.e. in Ω,

with γ(x) ≤ λ2 for a.e. x ∈ Ω and γ(x) < λ2 on a subset of Ω of positive
measure. A slight improvement of the main result in [21] has been obtained in
[29]. It amounts to replacing condition (1.8) with

lim sup
s→∞

f(x, s)/s ≤ γ+(x), lim sup
s→−∞

f(x, s)/s ≤ γ−(x)

uniformly a.e. in Ω, with γ+(x), γ−(x) ≤ λ2 for a.e. x ∈ Ω and γ+(x) or γ−(x) <

λ2 on a subset of Ω of positive measure.
The proof of the result in [21] (as well as of that in [29]) exploits an idea

introduced in [4], combined with some delicate estimates which are based on the
maximum principle and a bootstrap technique. The method essentially consists
of reducing the problem, through a Lyapunov–Schmidt decomposition together
with degree and connectedness arguments, to the situation of well ordered lower
and upper solutions, i.e. satisfying (1.2). However, this technique does not pro-
vide any information on the location of the solution, even in the case where α

and β satisfy (1.4). Also, its definite linear character prevents the consideration
of nonlinearities which exhibit an asymmetric behaviour at infinity; it imposes
the rather unnatural restriction (1.7).

The aim of this paper is to provide, when condition (1.4) is assumed, a
different approach to the problem, based on a direct use of the Leray–Schauder
continuation method. The main novelty lies in the introduction of a suitable ho-
motopy which eventually allows us to prove that the degree of the given problem
is nonzero on an open bounded set conveniently defined in the function space.
The advantages of this method are manifold. It gives some information about
where the solution is situated. Indeed, when (1.4) holds, the solution u satisfies

β(x0) ≤ u(x0) ≤ α(x0) for some x0 ∈ Ω,
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instead of (1.3); further, we get information on the normal derivative of u in
the case of Dirichlet boundary conditions. This simple fact is sometimes suffi-
cient to prove the existence of multiple solutions. Moreover, we can deal with
nonlinearities f , having linear growth, whose limits

lim sup
s→∞

f(x, s)/s and lim sup
s→−∞

f(x, s)/s

may be different. So that, in some situations, we are able to relate the asymptotic
behaviour of f with the Dancer–Fuč́ık spectrum of the homogeneous problem

Lu = λ+u+ − λ−u− in Ω, Bu = 0 on ∂Ω.

Finally, since no restriction like (1.7) is required, it turns out that the existence
of a lower solution α and an upper solution β satisfying (1.4) appears as a (rather
weak) control with respect to the first eigenvalue λ1, which yields the solvability
of problem (1.1) when it is coupled with an additional noninterference condition
with the rest of the (possibly generalized) spectrum.

However, we point out again that our approach requires that α and β satisfy
(1.4), a condition which was not needed at all in [4] and [21].

2. Preliminaries, statements and remarks

Throughout this paper Ω will denote a bounded domain in RN , having a
boundary ∂Ω of class C1,1. Let L be the real second order strongly uniformly
elliptic operator given by

Lu = −
N∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

N∑
i=1

ai
∂u

∂xi
+ a0u,

where aij = aji ∈ C0,1(Ω) for i, j = 1, . . . , N , ai ∈ L∞(Ω) for i = 0, . . . , N , with
a0(x) ≥ 0 for a.e. x ∈ Ω and a0(x) > 0 on a subset of Ω of positive measure. We
also suppose that the boundary ∂Ω is the disjoint union of two closed subsets
Γ0 and Γ1 each of which is an oriented (N − 1)-dimensional submanifold of
RN . Let us denote by ν ∈ C1(∂Ω, RN ) the unit outer normal to ∂Ω and by
η ∈ C1(Γ1, RN ) a vector field satisfying (η | ν) > 0 on Γ1. Let b0 ∈ C1(Γ1) be a
nonnegative function and define the boundary operator

Bu =

{
u on Γ0,

∂u/∂η + b0u on Γ1.

Let p ∈ ]N,∞[ be fixed. In this case, any function in W 2,p(Ω) is twice differen-
tiable a.e. in Ω and belongs to C1(Ω). Then we set

W 2,p
B (Ω) = {u ∈ W 2,p(Ω) | Bu = 0},
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where B is defined in the classical sense. Let L : W 2,p
B (Ω) → Lp(Ω) be the

operator defined by Lu = Lu a.e. in Ω. It follows from the maximum principle
and the regularity theory for elliptic equations that L is a linear homeomorphism
(cf. e.g. [4], [8], [23]). We denote by λ1 the principal eigenvalue of L; λ1 is positive,
simple and there exists a corresponding eigenfunction ϕ1 such that ϕ1(x) > 0 for
x ∈ Ω∪Γ1 and (∂ϕ1/∂ν)(x) < 0 for x ∈ Γ0. Moreover, λ1 is an eigenvalue of the
adjoint operator L∗, with an associated eigenfunction ϕ∗1 satisfying ϕ∗1(x) > 0
for x ∈ Ω (see [3]).

Let us consider the semilinear elliptic problem

(2.1) Lu = f(x, u) in Ω, Bu = 0 on ∂Ω.

Throughout the paper we assume that f : Ω×R → R satisfies the Lp-Carathéo-
dory conditions. This precisely means that f(x, ·) : R → R is continuous for a.e.
x ∈ Ω, f(·, s) : Ω → R is measurable for every s ∈ R, and for every R > 0, there
is a function γR ∈ Lp(Ω) such that |f(x, s)| ≤ γR(x) for a.e. x ∈ Ω and every
s ∈ [−R,R].

By a lower solution of (2.1) we mean a function α ∈ W 2,p(Ω) such that

Lα(x) ≤ f(x, α(x)) for a.e. x ∈ Ω, Bα(x) ≤ 0 for x ∈ ∂Ω.

An upper solution β is defined similarly by reversing the signs in the above
inequalities. A solution of (2.1) can be thought of as a function u which is
simultaneously a lower and an upper solution.

Generally we also suppose that f grows at most linearly, i.e.

(f0) there exists a function γ ∈ Lp(Ω) such that

|f(x, s)| ≤ γ(x)(1 + |s|) for a.e. x ∈ Ω and every s ∈ R.

In the sequel, we will, however, need a more precise control on the linear growth
of f . To express it, we first introduce the following condition:

(f1) there exist functions a, b, c, d ∈ Lp(Ω) such that

a(x) ≤ lim inf
s→∞

f(x, s)/s ≤ lim sup
s→∞

f(x, s)/s ≤ b(x),

c(x) ≤ lim inf
s→−∞

f(x, s)/s ≤ lim sup
s→−∞

f(x, s)/s ≤ d(x),

uniformly a.e. in Ω.

This means that for every ε > 0 there exists sε > 0 such that

a(x)− ε ≤ f(x, s)/s ≤ b(x) + ε for a.e. x ∈ Ω and all s ≥ sε,

c(x)− ε ≤ f(x, s)/s ≤ d(x) + ε for a.e. x ∈ Ω and all s ≤ −sε.

Next we give the following definition, where we set as usual u+ = max{u, 0}
and u− = −min{u, 0}.
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Definition 2.1. Let a, b, c, d ∈ Lp(Ω) be functions satisfying a(x) ≤ b(x)
and c(x) ≤ d(x) for a.e. x ∈ Ω. We say that the box

[a, b]× [c, d] = {(q+, q−) | q+, q− ∈ Lp(Ω), a(x) ≤ q+(x) ≤ b(x),

c(x) ≤ q−(x) ≤ d(x) for a.e. x ∈ Ω}

is admissible if the following conditions hold:

(A) for every (q+, q−) ∈ [a, b]× [c, d], any nontrivial solution u of

Lu = q+u+ − q−u− in Ω, Bu = 0 on ∂Ω,

is such that either v = u or v = −u satisfies

v(x) > 0 for x ∈ Ω ∪ Γ1 and
∂v

∂ν
(x) < 0 for x ∈ Γ0;

(B) there exist two continuous functions q•+ (resp. q•−) : [0, 1] → Lp(Ω),
µ 7→ qµ

+ (resp. qµ
−), such that

(i) (q1
+, q1

−) ∈ [a, b]× [c, d] and q1
+(x), q1

−(x) ≥ λ1 for a.e. x ∈ Ω,
(ii) q0

+ = q0
−,

(iii) for every µ ∈ [0, 1] the problem

Lu = qµ
+u+ − qµ

−u− in Ω, Bu = 0 on ∂Ω,

has only the trivial solution.

Roughly speaking, condition (A) expresses the fact that the box [a, b]× [c, d]
does not interfere with any eigenvalue of L except λ1, while condition (B) is an
assumption of nondegeneracy on the degree. Now we are in a position to state
the main result of this paper.

Theorem 2.2. Assume condition (f1) holds and the box [a, b] × [c, d] is ad-
missible. Suppose that there exist a lower solution α and an upper solution β

satisfying

(2.2) β(x) < α(x) for all x ∈ Ω.

Then problem (2.1) has at least one solution u ∈ S, where

S = {u ∈ C1(Ω) | Bu = 0 and β(x0) < u(x0) < α(x0) for some x0 ∈ Ω}.

Moreover, there exist a minimal solution v and a maximal solution w with v, w ∈
S, i.e. there is no solution u ∈ S such that

u ≥ v, u 6= v or w ≥ u, w 6= u.

There are three main aspects of this result we wish to comment: the con-
struction of admissible boxes [a, b] × [c, d], the construction of lower and upper
solutions satisfying (2.2) and the localization of the solution by means of the
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set S. The rest of this section, which is subdivided in three parts, is devoted to
this discussion.

2.1. Remarks on the construction of admissible boxes. The first
criterion of admissibility we present holds for a general nonselfadjoint operator
L as considered above. It is adapted from Lemma 2.2 of [2].

Proposition 2.3. Let a, c ∈ L∞(Ω), and b ∈ Lp(Ω) be such that

(i) a(x), c(x) ≤ λ1 for a.e. x ∈ Ω,
(ii) b(x) ≥ λ1 for a.e. x ∈ Ω and b(x) > λ1 on a subset of Ω of positive

measure.

Then there exists d ∈ R, with d > λ1, such that the box [a, b]× [c, d] is admissible.

Theorem 2.2, together with Proposition 2.3, can be compared to Theorem 3.1
of [4], where the operators L and B were as general as here, but the nonlinearity
f was supposed to be a bounded perturbation of λ1s, and no information on
the location of the solution nor the existence of extremal solutions was obtained.
However, it should be noted that in [4] condition (2.2) was not needed and f

could depend also on ∇u.
The second criterion is confined to the case where the operator L is selfad-

joint. It is related to Lemma 6.2 of [12]. More precisely, we suppose that L is
formally selfadjoint, i.e.

Lu = −
N∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u,

with aij = aji for i, j = 1, . . . , N , and, in the definition of B, η is the conormal
vector field. This includes in particular the case of Dirichlet or Neumann bound-
ary conditions. In this frame, we can state a more precise result than Proposition
2.3, which makes use of the Dancer–Fuč́ık spectrum for the operator L, i.e. the
set F of those (λ+, λ−) ∈ R2 such that the problem

Lu = λ+u+ − λ−u− in Ω, Bu = 0 on ∂Ω,

has a nontrivial solution. It has recently been proven in [12] (cf. [9] for some
preliminary results in this direction) that F contains a curve F2 which passes
through (λ2, λ2), where λ2 is the second eigenvalue of L. The domain bounded
by the lines [λ1,∞[×{λ1}, {λ1}×[λ1,∞[ and F2 does not intersect F . The curve
F2 is continuous, strictly decreasing, symmetric with respect to the diagonal. It
is asymptotic to the lines R × {λ1} and {λ1} × R, except when N = 1 and B
is the Neumann boundary operator, i.e. Γ0 = ∅ and b0 = 0. We also recall that
in the one-dimensional case it is not difficult (see e.g. [18]) to derive in some
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situations an explicit formula describing F2. For instance, if Lu = −u′′ + a0u

with a0 a positive constant and Ω = ]0, π[, then

F2 = {(λ+, λ−) | λ+, λ− > 0 and (λ+ − a0)−1/2 + (λ− − a0)−1/2 = 1}

for Bu = (u(0), u(π)) (Dirichlet boundary conditions), and

F2 = {(λ+, λ−) | λ+, λ− > 0 and (λ+ − a0)−1/2 + (λ− − a0)−1/2 = 2}

for Bu = (u′(0), u′(π)) (Neumann boundary conditions).

Proposition 2.4. Assume that the operator L is selfadjoint. Let (λ+, λ−)
∈ F2 and let a, b, c, d ∈ L∞(Ω) satisfy a(x) ≤ b(x), c(x) ≤ d(x) and λ1 ≤ b(x) ≤
λ+, λ1 ≤ d(x) ≤ λ− for a.e. x ∈ Ω. Moreover, suppose that λ1 < b(x), λ1 < d(x)
on subsets of Ω of positive measure and b(x) < λ+, d(x) < λ− on a common
subset of Ω of positive measure. Then the box [a, b]× [c, d] is admissible.

Using Proposition 2.4, we obtain the following result where the asymptotic
behaviour of f is related to the second branch F2 of the Dancer–Fuč́ık spectrum
of L.

Theorem 2.5. Suppose that the operator L is selfadjoint, let (λ+, λ−) ∈ F2

and assume that (f0) holds with γ ∈ L∞(Ω). Moreover, suppose that

(f2) lim sups→∞ f(x, s)/s ≤ λ+ and lim sups→−∞ f(x, s)/s ≤ λ− uniformly
a.e. in Ω, with strict inequalities on a common subset of Ω of positive
measure.

Further, assume that there exist a lower solution α and an upper solution β

satisfying (2.2). Then the conclusion of Theorem 2.2 holds.

An immediate corollary of Theorem 2.5 can be stated in the case where f

can be written as

(f3) f(x, s) = g(s)− h(x) with g : R → R continuous and h ∈ L∞(Ω).

The main feature of this result is that no growth restriction from below is
imposed on g; yet, we lose the information on the localization of the solution.

Corollary 2.6. Suppose that the operator L is selfadjoint. Let (λ+, λ−) ∈
F2 and assume that (f3) holds together with

(f ′2) lim sups→∞ g(s)/s ≤ λ+ and lim sups→−∞ g(s)/s ≤ λ−, and at least
one of these inequalities is strict.

Further, suppose that there exist a lower solution α and an upper solution β

satisfying (2.2). Then problem (2.1) has at least one solution.

Theorem 2.5 and Corollary 2.6 can be compared with the main result in
[21] (see also [29]), where it is assumed that λ+ = λ− = λ2 together with the
additional restriction lim inf |s|→∞ f(x, s)/s ≥ λ1 uniformly a.e. in Ω. Variants of
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this result can be obtained where condition (f ′2) is suitably weakened, introducing
some restrictions on the potential G(s) =

∫ s

0
g(t) dt, as in [14], [22] and [24].

2.2. Remarks on the construction of lower and upper solutions. We
describe some situations where lower and upper solutions satisfying (2.2) arise
in a natural way. In this context, it is convenient to rewrite problem (2.1) in the
equivalent form

(2.3) Lu = λ1u + g(x, u)− h(x) in Ω, Bu = 0 on ∂Ω,

where g : Ω× R → R satisfies the Lp-Carathéodory conditions and h ∈ Lp(Ω).
The first three results we present have been obtained in [21] and we refer to

this paper for the proofs. These propositions are basically similar and will be
deduced in a unified way (analogous results can be found in [27], when g lies to
the left of λ1).

We start by considering the case where a Dolph-type condition is assumed
to the right of λ1 (cf. [16]).

Proposition 2.7. Assume that

lim inf
s→∞

g(x, s)/s ≥ 0,

uniformly a.e. in Ω, with strict inequality on a subset of Ω of positive measure.
Then, for any given h and for any given t > 0, there exists a lower solution α

of (2.3) with α(x) ≥ tϕ1(x) for x ∈ Ω.

A similar condition on g assumed at −∞ yields the existence of an upper
solution β with β(x) ≤ −tϕ1(x) for x ∈ Ω.

Now we consider the case where a Landesman–Lazer condition is satisfied to
the right of λ1 (cf. [28], [2]).

Proposition 2.8. Assume that there exists a function k ∈ Lp(Ω) such that

g(x, s) ≥ k(x) for a.e. x ∈ Ω and every s ≥ 0.

Then, for any given h satisfying∫
Ω

(lim inf
s→∞

g(x, s))ϕ∗1(x) dx >

∫
Ω

h(x)ϕ∗1(x) dx,

and for any given t > 0, there exists a lower solution α of (2.3) with α(x) ≥
tϕ1(x) for x ∈ Ω.

Similar conditions assumed for s ≤ 0 yield the existence of an upper solution
β with β(x) ≤ −tϕ1(x) for x ∈ Ω.

Next we consider the case where a sign and orthogonality condition intro-
duced by De Figueiredo and Ni is satisfied to the right of λ1 (cf. [13], [25]).
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Proposition 2.9. Assume that

g(x, s) ≥ 0 for a.e. x ∈ Ω and every s ≥ 0.

Then, for any given h satisfying∫
Ω

h(x)ϕ∗1(x) dx = 0

and any given t > 0, there exists a lower solution α of (2.3) with α(x) ≥ tϕ1(x)
for x ∈ Ω.

Again a similar condition assumed for s ≤ 0 yields the existence of an upper
solution β with β(x) ≤ −tϕ1(x) for x ∈ Ω.

Remark 2.10. In the case where Γ0 = ∅, so that Bu = ∂u/∂η + b0u, it is
sufficient to assume in Proposition 2.9 that the condition g(x, s) ≥ 0 be satisfied
only for s large, i.e. there exists s0 ≥ 0 such that g(x, s) ≥ 0 for a.e. x ∈ Ω and
all s ≥ s0. This is due to the fact that in this case minx∈Ω ϕ1(x) > 0.

Further, if the first eigenfunction ϕ1 of L is constant (which happens if and
only if Γ0 = ∅, a0 is constant and b0 = 0), then it is not difficult to see that the
following criterion holds.

Proposition 2.11. Assume that ϕ1 is constant. Suppose that there are
sequences (bn)n and (cn)n of nonnegative numbers, with bn →∞ and cn →∞,
such that

g(x, s) ≥ 0 for a.e. x ∈ Ω and every s ∈ [bn, bn + cn].

Then, for any given h satisfying∫
Ω

h(x) dx = 0,

there exists a sequence (αn)n of lower solutions of (2.3) with αn(x) ∈ [bn, bn+cn]
for n large and x ∈ Ω.

A similar condition assumed for s ≤ 0 yields the existence of a sequence
(βn)n of upper solutions with βn(x) ∈ [−bn − cn,−bn] for x ∈ Ω.

Remark 2.12. It is obvious that Proposition 2.11 holds even if
∫
Ω

h(x) dx

6= 0, provided that one assumes

g(x, s) ≥ 1
|Ω|

∫
Ω

h(x) dx for a.e. x ∈ Ω and every s ∈ [bn, bn + cn].

Actually, a stronger result than Proposition 2.11 can be obtained, allowing
the length cn to go to zero but not too quickly.
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Proposition 2.13. Assume that ϕ1 is constant. Let (an)n, (bn)n and (cn)n

be sequences of nonnegative numbers with an → ∞, bn → ∞ and, for some
q ∈ ]N/2, p[ (q = 1 if N = 1), cna

p/q−1
n →∞. Suppose that

g(x, s) ≥ an for a.e. x ∈ Ω and every s ∈ [bn, bn + cn].

Then, for any given h, there exists a sequence (αn)n of lower solutions of (2.3)
with αn(x) ∈ [bn, bn + cn] for n large and x ∈ Ω.

Remark 2.14. If p = ∞, it is easy to build lower solutions, taking cn = 0
and assuming lim sups→∞ g(x, s) = ∞ uniformly a.e. in Ω (cf. [20]).

A simple example of a class of functions having linear growth and sat-
isfying the conditions of Proposition 2.13 is given by g(s) = s|sin(sr)| with
0 ≤ r < 2p/N .

2.3. Remarks on the localization of the solution. In addition to the
existence of a solution u, Theorem 2.2 also provides some information about
where u is located; namely, we know that u ∈ S. We show in the proof of
Theorem 2.2 that this precisely means that either there exists x0 ∈ Ω ∪ Γ1 such
that β(x0) ≤ u(x0) ≤ α(x0), or u(x) > α(x) for all x ∈ Ω ∪ Γ1 and there exists
x0 ∈ Γ0 such that (∂u/∂ν)(x0) = (∂α/∂ν)(x0), or u(x) < β(x) for all x ∈ Ω∪Γ1

and there exists x0 ∈ Γ0 such that (∂u/∂ν)(x0) = (∂β/∂ν)(x0).
It should be observed that in this context one cannot generally guarantee

that the solution u satisfies β(x) ≤ u(x) ≤ α(x) for all x ∈ Ω. This is shown by
the following simple example.

Example 2.15. Consider the linear Dirichlet problem

−u′′ = 3u + sin 2x in ]0, π[, u(0) = u(π) = 0.

The assumptions of Theorem 2.2 are satisfied, since α(x) = sinx and β(x) =
− sinx are respectively lower and upper solutions, with β(x) < α(x) for x ∈ ]0, π[.
Notice also that u(x) = sin 2x is the (unique) solution and is such that both u−α

and u− β change sign in ]0, π[.

However, the information given by Theorem 2.2 is sometimes sufficient to
prove the existence of multiple solutions. A typical result in this direction is the
following.

Theorem 2.16. Assume that there exist two lower solutions α1, α2 and two
upper solutions β1, β2 satisfying

α1(x) ≤ β1(x) < β2(x) < α2(x) for x ∈ Ω ∪ Γ1

and
∂β1

∂ν
(x) >

∂β2

∂ν
(x) for x ∈ Γ0.

Moreover, suppose that
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(f4) there are functions a, b ∈ Lp(Ω) such that

a(x) ≤ lim inf
s→∞

f(x, s)/s ≤ lim sup
s→∞

f(x, s)/s ≤ b(x)

uniformly a.e. in Ω.

Then problem (2.1) has at least two distinct solutions u1 and u2 with u1(x) ≤
u2(x) for all x ∈ Ω. Moreover, u1 satisfies

α1(x) ≤ u1(x) ≤ β1(x) for all x ∈ Ω ∪ Γ1

and
∂u1

∂ν
(x) ≥ ∂β1

∂ν
(x) for all x ∈ Γ0,

and u2 is such that either

u2(x0) ≥ β2(x0) for some x0 ∈ Ω ∪ Γ1,

or
∂u2

∂ν
(x0) =

∂β2

∂ν
(x0) for some x0 ∈ Γ0.

A result similar to Theorem 2.16 holds assuming the existence of two lower
solutions α1, α2 and of two upper solutions β1, β2 such that β1(x) < α1(x) <

α2(x) ≤ β2(x) for x ∈ Ω ∪ Γ1, and (∂α1/∂ν)(x) > (∂α2/∂ν)(x) for x ∈ Γ0.
It is worth noticing that in Theorem 2.16 the assumption of the existence

of two upper solutions β1, β2 can be replaced by the existence of a strict upper
solution β, according to the following definition (a strict lower solution α can be
defined similarly).

Definition 2.17. An upper solution β is called strict if there exists a con-
stant δ > 0 such that either

Lβ(x) ≥ f(x, β(x) + s) for a.e. x ∈ Ω and every s ∈ [0, δϕ1(x)],

or
Lβ(x) ≥ f(x, β(x)− s) for a.e. x ∈ Ω and every s ∈ [0, δϕ1(x)].

Hence, we obtain the following corollary of Theorem 2.16.

Corollary 2.18. Assume (f4) and suppose that there exist two lower solu-
tions α1, α2 and a strict upper solution β satisfying

α1(x) < β(x) < α2(x) for all x ∈ Ω ∪ Γ1.

Then problem (2.1) has at least two distinct solutions.

These results naturally apply to the study of the following Ambrosetti–Prodi
problem:

(2.4) Lu = λ1u + g(x, u)− tϕ1 in Ω, Bu = 0 on ∂Ω,

where t is a real parameter.
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Proposition 2.19. Assume that g : Ω× R → R is continuous and

(g1) lim|s|→∞ g(x, s) = ∞ uniformly a.e. in Ω;
(g2) there is a constant γ such that |g(x, s)| ≤ γ(s + 1) for x ∈ Ω and s ≥ 0;
(g3) there are constants K, s0 > 0 such that either for each x ∈ Ω, the

function g(x, s) + Ks is nondecreasing for |s| ≤ s0, or for each x ∈ Ω,
g(x, s)−Ks is nonincreasing for |s| ≤ s0.

Then there exists a real number t0 such that problem (2.4) has no solution for
t < t0 and has at least two solutions for t > t0.

Remark 2.20. It is not clear to us if the assumptions of Proposition 2.19
imply, in dimension N > 1, the existence of an a priori bound on the solutions of
(2.4), when t varies in a compact set. This fact prevents us from establishing the
existence of a solution for t = t0. However, with respect to the classical results
in this context, we are able to discuss the existence of multiple solutions of (2.4)
under the very natural assumption (g1), which replaces the usual (stronger)
condition: there exists a constant ε > 0 such that

lim inf
|s|→∞

g(x, s)/s ≥ ε uniformly in Ω.

From this point of view Proposition 2.19 can be seen as a partial extension to
the higher dimensional case, as well as to more general differential operators and
boundary conditions, of some results obtained in [7] and [26]. We also point out
that condition (g3) was already used in [6] and [7], and is for instance satisfied
if g is of class C1 with respect to s near 0.

Finally, if we suppose that Γ0 = ∅, a0 is constant and b0 = 0, so that one
can take ϕ1 = 1, then the following variant of Proposition 2.19 can be proved,
where condition (g1) is considerably relaxed and (g3) is omitted.

Proposition 2.20. Assume that g : Ω×R → R is continuous and satisfies

(g′1) lim sup|s|→∞ g(x, s) = ∞ uniformly a.e. in Ω

and (g2). Then there exists t0, with possibly t0 = −∞, such that the Neumann
problem

Lu = λ1u + g(x, u)− t in Ω, ∂u/∂η = 0 on ∂Ω,

has no solution for t < t0 and at least two solutions for t > t0.

3. Proofs

Lemma 3.1. Let v ∈ C1(Ω) be a function such that:

(i) v(x) > 0 for all x ∈ Ω ∪ Γ1,
(ii) v(x) = 0 and (∂v/∂ν)(x) < 0 for all x ∈ Γ0.
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Then the following holds:

(j) for any sequence (vn)n ⊂ C1(Ω) with vn(x) = 0 for all x ∈ Γ0 and
vn → v in C1(Ω), and for any constant c ∈ ]0, 1[, one has

vn(x) ≥ cv(x) for all x ∈ Ω and n large enough;

(jj) for any w ∈ C1(Ω) with w(x) ≤ 0 for all x ∈ Γ0, there is a constant
c > 0 such that

w(x) ≤ cv(x) for all x ∈ Ω.

Proof. First, we observe that there exists a constant δ0 > 0 such that, for
any δ ∈ ]0, δ0], one can find a compact tubular neighbourhood Nδ of Γ0 in Ω such
that the map (y, t) 7→ y− tν(y) is a C1-homeomorphism from Γ0× [0, δ] onto Nδ

(cf. [17]). It is also convenient, for any function v ∈ C1(Ω), to extend ∂v/∂ν by
continuity to the whole of Nδ writing

∂v

∂ν
(x) = (∇v(y − tν(y)) | ν(y)) if x = y − tν(y).

Now we are in a position to prove (j). We know that, taking δ ∈ ]0, δ0] small
enough, maxx∈Nδ

(∂v/∂ν)(x) = −M < 0. Hence, for any given c ∈ ]0, 1[ and for
all n large enough,

∂vn

∂ν
(x) <

∂v

∂ν
(x) + (1− c)M ≤ c

∂v

∂ν
(x) for all x ∈ Nδ,

and then, writing x = y − tν(y),

vn(x)− cv(x) = −∂(vn − cv)
∂ν

(y − τν(y))t ≥ 0

for some τ ∈ ]0, t[. Hence, we get

vn(x) ≥ cv(x) for all x ∈ Nδ.

On the other hand, we have infx∈Ω\Nδ
v(x) = m > 0. Then, for all n large

enough,
vn(x) ≥ v(x)− (1− c)m ≥ cv(x) for all x ∈ Ω \Nδ,

and (j) follows.
Next, to prove (jj), we take Nδ in such a way that maxx∈Nδ

(∂v/∂ν)(x) =
−M < 0 and a constant c1 > 0 such that

−c1M ≤ min
x∈Nδ

∂w

∂ν
(x).

Let x = y − tν(y) ∈ Nδ. We can write

c1v(x)− w(x) = c1v(y)− w(y)− t
∂(c1v − w)

∂ν
(y − τν(y)) ≥ 0
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for some τ ∈ ]0, t[, and then c1v(x) ≥ w(x) for all x ∈ Nδ. On the other hand,
we take a constant c2 > 0 such that

c2 inf
x∈Ω\Nδ

v(x) ≥ sup
x∈Ω\Nδ

w(x).

Hence, taking c = max{c1, c2}, we get the conclusion. �

Lemma 3.2 (Strong maximum principle). Let L, B and Ω be as in Section
2 and let v ∈ W 2,p(Ω) be given. Then the following holds.

(i) (Interior form) Let x0 ∈ Ω and let B be an open ball centered at x0

and contained in Ω. If Lv ≥ 0 in B, v(x) ≥ v(x0) for all x ∈ B and
v(x0) ≤ 0, then v(x) = v(x0) for all x ∈ B.

(ii) (Boundary form) Let x0 ∈ ∂Ω and let B be an open ball contained in
Ω with x0 ∈ ∂B. If Lv ≥ 0 in B, v(x) > v(x0) for all x ∈ B and
v(x0) ≤ 0, then (∂v/∂ζ)(x0) < 0 for each ζ satisfying (ζ | ν) > 0.

(iii) (Global form) Let k ≥ 0 be a constant. If Lv + kv ≥ 0 in Ω and
Bv ≥ 0 on ∂Ω, then either v = 0 in Ω, or v(x) > 0 for all x ∈ Ω ∪ Γ1

and (∂v/∂ν)(x) < 0 for all x ∈ Γ0.

Proof. This follows from [19], p. 188 and p. 33, and from [11], p. 49. See
also [3], p. 634. �

Proof of Theorem 2.2. This proof is divided in several steps. Throughout
we assume that α and β are lower and upper solutions which are not already
solutions of problem (2.1).

Step 1. Definition of a homotopy. Set

γ(x, s;µ) = s−max{0, µ− |s− α(x)− µ|}+ max{0, µ− |s− β(x) + µ|}

and
f(x, s;µ) = f(x, γ(x, s;µ))

for a.e. x ∈ Ω, every s ∈ R and µ ∈ [0, 1]. Define

k(x, s) =


f(x, α(x)) + q1

+(x)(s− α(x)) if s ≥ α(x),

f(x, s) if α(x) > s > β(x),

f(x, β(x)) + q1
−(x)(s− β(x)) if β(x) ≥ s,

for a.e. x ∈ Ω and every s ∈ R. Consider the homotopy

(3.1) Lu = (1− µ)f(x, u;µ) + µk(x, u) in Ω, Bu = 0 on ∂Ω,

with µ ∈ [0, 1].
We recall from Section 2 that the differential operator L and the bound-

ary operator B induce a linear homeomorphism L : W 2,p
B (Ω) → Lp(Ω), with

inverse K. The compact embedding of W 2,p(Ω) into C1(Ω) implies that K :
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Lp(Ω) → C1(Ω) is compact. Moreover, for each µ ∈ [0, 1], consider the operator
Nµ : C1(Ω) → Lp(Ω) defined by Nµu = (1−µ)f(·, u;µ) + µk(·, u); Nµ is contin-
uous and maps bounded sets into bounded sets. Hence, for each µ ∈ [0, 1], the
operator KNµ : C1(Ω) → C1(Ω) is completely continuous and its fixed points
are precisely the solutions of (3.1).

Step 2. Construction of an open set.

Claim 1. There exists a constant C > 0 such that if u is a solution of (3.1),
for some µ ∈ [0, 1], which satisfies β(x0) ≤ u(x0) ≤ α(x0) for some x0 ∈ Ω, then

‖u‖C1 < C.

Proof. Assume by contradiction that, for each n, there exists a solution
u = un of (3.1) for some µ = µn ∈ [0, 1] such that

(3.2) β(xn) ≤ un(xn) ≤ α(xn) for some xn ∈ Ω,

and
‖un‖C1 ≥ n.

Define

g+(x, s) =

{
max{a(x),min{f(x, s)/s, b(x)}} if s ≥ 1,

g+(x, 1) if s < 1,

g−(x, s) =

{
max{c(x),min{f(x, s)/s, d(x)}} if s ≤ −1,

g−(x,−1) if s > −1

and
h(x, s;µ) = f(x, s;µ)− g+(x, s)s+ + g−(x, s)s−

for a.e. x ∈ Ω, every s ∈ R and µ ∈ [0, 1]. Notice that

g+(x, s) ∈ [a(x), b(x)], g−(x, s) ∈ [c(x), d(x)],

and for any ε > 0, there exists γε ∈ Lp(Ω) such that

|h(x, s;µ)| ≤ ε|s|+ γε(x)

for a.e. x ∈ Ω, every s ∈ R and µ ∈ [0, 1] (see e.g. [24]). In a similar way, we can
write

k(x, s) = q1
+(x)s+ − q1

−(x)s− + r(x, s)

with, for some δ ∈ Lp(Ω),

|r(x, s)| ≤ δ(x) for a.e. x ∈ Ω and every s ∈ R.

Next, setting vn = un/‖un‖C1 , we have

(3.3) Lvn = q̂ n
+v+

n − q̂ n
−v−n + r̂n in Ω, Bvn = 0 on ∂Ω,
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where, for each n, we put

q̂ n
+(x) = (1− µn)g+(x, un(x)) + µnq1

+(x) ∈ [a(x), b(x)],

q̂ n
−(x) = (1− µn)g−(x, un(x)) + µnq1

−(x) ∈ [c(x), d(x)],

and

r̂n(x) = (1− µn)
h(x, un(x);µn)

‖un‖C1
+ µn

r(x, un(x))
‖un‖C1

for a.e. x ∈ Ω. The functions r̂n are such that, for any ε > 0, there exists a
function ϑε ∈ Lp(Ω) (independent of n) such that

|r̂n(x)| ≤ ε +
ϑε(x)
‖un‖C1

for a.e. x ∈ Ω.

Rewrite (3.3) in the form

(3.4) Lvn = q̂ n
+v+

n − q̂ n
−v−n + r̂n

and recall that L : W 2,p
B (Ω) → Lp(Ω) is a linear homeomorphism. Since the right

hand side of (3.4) is bounded in Lp(Ω), we see that (vn)n is bounded in W 2,p(Ω)
and hence, going to a subsequence, vn → v weakly in W 2,p(Ω) and strongly in
C1(Ω), with ‖v‖C1 = 1. We can also suppose that q̂ n

+ → q̂+ and q̂ n
− → q̂−

weakly in Lp(Ω), with q̂+(x) ∈ [a(x), b(x)] and q̂−(x) ∈ [c(x), d(x)] for a.e. x ∈ Ω
(as convex sets are weakly closed in Lp(Ω)). Further, the weak continuity of L

implies that v is a nontrivial solution of

Lv = q̂+v+ − q̂−v− in Ω, Bv = 0 on ∂Ω.

From the admissibility condition (Definition 2.1, part (A)) of [a, b] × [c, d], we
derive that u = v or u = −v satisfies u(x) > 0 for x ∈ Ω∪Γ1 and (∂u/∂ν)(x) < 0
for x ∈ Γ0. Assume for instance that v is positive. By Lemma 3.1 there exist
constants c1, c2 > 0 such that, for n large,

vn(x) ≥ c1v(x), c2v(x) ≥ α(x)

and
un(x) = ‖un‖C1vn(x) ≥ c1‖un‖C1v(x) ≥ c2v(x) ≥ α(x)

for x ∈ Ω. This contradicts (3.2) and concludes the proof of Claim 1.

Now, we define in the Banach space

C1
B(Ω) = {u ∈ C1(Ω) | Bu = 0},

endowed with the C1-norm, the following open bounded set:

O = {u ∈ C1
B(Ω) | ‖u‖C1 < C and β(x0) < u(x0) < α(x0) for some x0 ∈ Ω},

where C is the constant given in Claim 1.
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Claim 2. Every solution u ∈ O of problem (3.1), for µ ∈ ]0, 1], is such that
β(x0) < u(x0) < α(x0) for some x0 ∈ Ω.

Proof. Let u ∈ O be a solution of (3.1) for some µ ∈ ]0, 1], and suppose by
contradiction that for instance

(3.5) u(x) ≥ α(x) for all x ∈ Ω.

Hence, u ∈ ∂O and three different cases may occur:

(i) there exists x0 ∈ Ω such that u(x0) = α(x0);
(ii) u(x) > α(x) for all x ∈ Ω and there exists x0 ∈ Γ1 such that u(x0) =

α(x0);
(iii) u(x) > α(x) for all x ∈ Ω ∪ Γ1 and there exists x0 ∈ Γ0 such that

(∂u/∂ν)(x0) = (∂α/∂ν)(x0).

Indeed, as u ∈ ∂O, there is a sequence (un)n ⊂ O such that un → u in
C1(Ω). Setting vn = un − α and v = u − α, we have vn → v in C1(Ω), with
vn(x) = 0 for x ∈ Γ0, v(x) ≥ 0 for x ∈ Ω and v(x) = 0 for x ∈ Γ0. Moreover,
for each n, there exists xn ∈ Ω such that vn(xn) < 0. We can assume that,
going to a subsequence, xn → x0 ∈ Ω. Clearly, we have v(x0) = 0. Hence,
if x0 ∈ Ω ∪ Γ1, (i) or (ii) follows. Finally, if v(x) > 0 for x ∈ Ω ∪ Γ1, it is
obvious that (∂v/∂ν)(x) ≤ 0 for x ∈ Γ0. On the other hand, we cannot have
(∂v/∂ν)(x) < 0 for all x ∈ Γ0. In fact, in such a case, by Lemma 3.1, if n is
large enough, we obtain vn(x) ≥ 1

2v(x) > 0 for x ∈ Ω: a contradiction.
Now, using (3.5), we get

L(u− α) ≥ (1− µ)(f(x, u;µ)− f(x, α)) + µ(k(x, u)− f(x, α))

= (1− µ)(f(x, u;µ)− f(x, α)) + µq1
+(x)(u− α)

for a.e. x ∈ Ω. Observe that u 6= α. Indeed, otherwise we would have

Lα = (1− µ)f(x, α;µ) + µk(x, α) = f(x, α) in Ω, Bα = 0 on ∂Ω,

that is, α would be a solution of (2.1).
In case (i), we can find an open ball B centered at x0, with B ⊂ Ω, such that

(3.6) L(u− α)(x) ≥ µq1
+(x)(u− α(x)) ≥ 0 for a.e. x ∈ B.

Moreover, we can also suppose that there is a point x1 ∈ B where u(x1) >

α(x1). Since u(x) ≥ α(x) for x ∈ B and u(x0) = α(x0) the interior form of the
strong maximum principle (cf. Lemma 3.2) implies that u = α in B, which is a
contradiction.

In case (ii), we can find an open ball B, with B ⊂ Ω and x0 ∈ ∂B, such that
(3.6) holds. Since u(x) > α(x) for x ∈ B and u(x0) = α(x0), the boundary form
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of the strong maximum principle (cf. Lemma 3.2) implies that (∂u/∂ζ)(x0) <

(∂α/∂ζ)(x0) for any vector ζ satisfying (ζ | ν) > 0. This in particular yields

0 = Bu(x0) =
∂u

∂η
(x0) + b0(x0)u(x0)

<
∂α

∂η
(x0) + b0(x0)α(x0) = Bα(x0) ≤ 0,

which is a contradiction.
In case (iii), we find, arguing as in case (ii), that (∂u/∂ν)(x0) < (∂α/∂ν)(x0):

a contradiction. This concludes the proof of Claim 2.

Similarly, we can treat the case where, instead of (3.5), one has u(x) ≤ β(x)
for all x ∈ Ω.

Step 3. Computation of the degree. Suppose that, for µ = 0, problem (3.1)
has no solution on ∂O. From Step 2, it follows that the degree

d(I −KNµ,O, 0)

is defined and independent of µ ∈ [0, 1]. For µ = 1, problem (3.1) reduces to

(3.7) Lu = k(x, u) in Ω, Bu = 0 on ∂Ω.

Claim 1. There is no solution u of (3.7) such that u(x) ≥ α(x) for all
x ∈ Ω.

Proof. If u(x) ≥ α(x) for all x ∈ Ω, then u satisfies, for a.e. x ∈ Ω,

Lu = f(x, α) + q1
+(x)(u− α).

Hence, we deduce that u 6= α because otherwise α would be a solution of (2.1).
Moreover, let α̂ be the solution of

Lα̂ = Lα in Ω, Bα̂ = 0 on ∂Ω.

Since {
L(α̂− α) = 0 in Ω,

B(α̂− α) ≥ 0 on ∂Ω,
and

{
L(u− α) ≥ 0 in Ω,

B(u− α) ≥ 0 on ∂Ω,

the global form of the strong maximum principle (cf. Lemma 3.2) implies that
α̂(x) ≥ α(x) and u(x) > α(x) for all x ∈ Ω. Therefore, we have, for a.e. x ∈ Ω,

L(u− α̂)− λ1(u− α̂) = L(u− α)− λ1(u− α) + λ1(α̂− α)

≥ Lu− f(x, α)− q1
+(x)(u− α) + (q1

+(x)− λ1)(u− α)

= (q1
+(x)− λ1)(u− α).
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Since (L−λ1)(u− α̂) ∈ Range(L−λ1I) and Range(L−λ1I) = Ker(L∗−λ1I)⊥

(as L− λ1I is a Fredholm operator of index zero), we get

0 =
∫

Ω

(L − λ1)(u− α̂)ϕ∗1 dx ≥
∫

Ω

(q1
+(x)− λ1)(u− α)ϕ∗1 dx ≥ 0,

which implies q1
+ = λ1. This contradicts condition (iii) in Definition 2.1, part

(B), and concludes the proof of Claim 1.

In a similar way we can prove the following.

Claim 2. There is no solution u of (3.7) such that u(x) ≤ β(x) for x ∈ Ω.

As a consequence of the above claims we have

d(I −KN1,O, 0) = d(I −KN1, BR, 0),

where BR is any ball in C1
B(Ω) of center 0 and radius R such that O ⊂ BR.

Taking into account the admissibility conditions (Definition 2.1, part (B)), we
now define the function

k(x, s;µ) =


f(x, α(x)) + qµ

+(x)(s− α(x)) if s ≥ α(x),

f(x, s) if α(x) > s > β(x),

f(x, β(x)) + qµ
−(x)(s− β(x)) if β(x) ≥ s,

for a.e. x ∈ Ω, every s ∈ R and µ ∈ [0, 1]. Moreover, for each µ ∈ [0, 1], we
define the operator N̂µ : C1(Ω) → Lp(Ω) by N̂µ(u) = k(·, u;µ). Of course, N̂µ is
continuous and maps bounded sets into bounded sets, and N̂1 = N1. Next, we
consider the homotopy

(3.8)
Lu− qµ

+u+ + qµ
−u− = µ(k(x, u;µ)− qµ

+u+ + qµ
−u−) in Ω,

Bu = 0 on ∂Ω,

for µ ∈ [0, 1]. It is clear from the definition of k(x, s;µ) that the right hand side
of (3.8) is bounded in Lp(Ω).

Claim 3. There exists a constant D > 0 such that for any µ ∈ [0, 1] and
every solution u of (3.8), one has ‖u‖C1 < D.

Proof. Assume by contradiction that, for each n, there exist some µ =
µn ∈ [0, 1] and a solution u = un of (3.8) such that ‖un‖C1 ≥ n. Setting
vn = un/‖un‖C1 , we get

Lvn − qµn

+ v+
n + qµn

− v−n = µn(k(x, un;µn)− qµn

+ u+
n + qµn

− u−n )/‖un‖C1 in Ω,

Bvn = 0 on ∂Ω.

As the right hand side of the equation remains bounded in Lp(Ω), we deduce
that (vn)n is bounded in W 2,p(Ω) and therefore, going to a subsequence, vn → v

weakly in W 2,p(Ω) and strongly in C1(Ω), with ‖v‖C1 = 1. We can also assume
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that µn → µ ∈ [0, 1] and hence qµn

+ → qµ
+, qµn

− → qµ
− in Lp(Ω) (by Definition 2.1,

part (B)). Moreover, v satisfies

Lv = qµ
+v+ − qµ

−v− in Ω, Bv = 0 on ∂Ω.

Since by the admissibility conditions this problem has only the trivial solution,
we get a contradiction. This concludes the proof of Claim 3.

Now, take any constant R > D. We have

d(I −KN̂0, BR, 0) = d(I −KN̂1, BR, 0) = d(I −KN1, BR, 0).

Further, as I −KN̂0 is linear, bounded and one-to-one,

|d(I −KN̂0, BR, 0)| = 1,

which implies
|d(I −KN1, BR, 0)| = 1

and therefore
|d(I −KN0,O, 0)| = 1.

Step 4. Existence of extremal solutions. The proof of the existence of a
minimal solution v and a maximal solution w, with v, w ∈ S, is based on an
application of Zorn’s Lemma. Define the set

Σ = {u ∈ S | u solves (2.1)},

which can be (partially) ordered by the usual ordering: u1 ≤ u2 if and only if
u1(x) ≤ u2(x) for x ∈ Ω. We will show that Σ possesses a maximal element.
One should proceed similarly for proving the existence of a minimal element.
Let U = {ui | i ∈ I} be a totally ordered subset of Σ. We want to prove that U
has an upper bound in Σ. Set

u(x) = sup
i∈I

ui(x) for x ∈ Ω.

Note that, by Claim 1 in Step 2, U is uniformly bounded and equicontinuous.
Hence, the function u is well-defined and continuous on Ω. Let D = {xm | m ∈
N} be a countable dense subset of Ω and define a sequence in U as follows:

• for n = 1, take u1 ∈ U such that u1(x1) ≥ u(x1)− 1,
• for n = 2, take u2 ∈ U , with u2 ≥ u1, such that

u2(x2) ≥ u(x2)− 1/2, u2(x1) ≥ u(x1)− 1/2,

and so on. In this way, we construct a sequence (un)n ⊂ U , with u1 ≤ u2 ≤
. . . ≤ un ≤ un+1 ≤ . . . , such that

un(xk) ≥ u(xk)− 1/n for 1 ≤ k ≤ n.
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It is clear that (un(xm))n converges to u(xm) for each xm ∈ D, i.e. (un)n con-
verges to u pointwise on D. On the other hand, as (un)n is uniformly bounded
and equicontinuous, there exists a subsequence converging uniformly in Ω to
some function v. Actually, by monotonicity, the whole sequence (un)n converges
to v. Hence v = u on D and, by continuity, v = u on Ω. Moreover, as each un

is a solution, it follows that (un)n is bounded in W 2,p(Ω) and then there is a
subsequence of (un)n which converges weakly in W 2,p(Ω) and strongly in C1(Ω)
to some function w ∈ W 2,p(Ω). Hence, w is a solution of (2.1), with w ∈ S and
w = u in Ω. This shows that U has an upper bound in Σ. Zorn’s Lemma yields
the conclusion.

This concludes the proof of Theorem 2.2. �

Proof of Proposition 2.3. Verification of (A). Let u be a nontrivial
solution of

Lu = q+u+ − q−u− in Ω, Bu = 0 on ∂Ω.

First, we observe that if v = u or v = −u satisfies v(x) ≥ 0 for all x ∈ Ω,
then the conclusion follows from the global form of the maximum principle (cf.
Lemma 3.2). Indeed, we consider the problem

Lv + kv = (q + k)v in Ω, Bv = 0 on ∂Ω,

where we set q(x) = q+(x) if v = u or q(x) = q−(x) if v = −u and k is a constant
satisfying

k ≥ max{‖a‖∞, ‖c‖∞}.

Since the right hand side of the equation is nonnegative we get the conclusion.
Therefore, assume by contradiction that, for any given n, there exist qn

+, qn
− ∈

Lp(Ω) satisfying

qn
+(x) ∈ [a(x), b(x)], qn

−(x) ∈ [c(x), λ1 + 1/n], for a.e. x ∈ Ω,

and a solution un of the problem

Lun = qn
+u+

n − qn
−u−n in Ω, Bun = 0 on ∂Ω,

which changes sign in Ω. It is not restrictive also to suppose that ‖un‖C1 = 1.

Hence we can assume that, passing to a subsequence, un → u weakly in W 2,p(Ω)
and strongly in C1(Ω), with ‖u‖C1 = 1. Moreover, as each un changes sign,
we see by Lemma 3.1 that either there exists x0 ∈ Ω ∪ Γ1 such that u(x0) = 0
or there exists x0 ∈ Γ0 such that (∂u/∂ν)(x0) = 0. Since (qn

+)n and (qn
−)n are

bounded in Lp(Ω), we can also suppose that qn
+ → q+ and qn

− → q− weakly in
Lp(Ω), with

q+(x) ∈ [a(x), b(x)], q−(x) ∈ [c(x), λ1], for a.e. x ∈ Ω.
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Further, we deduce that u is a nontrivial solution of

Lu = q+u+ − q−u− in Ω, Bu = 0 on ∂Ω.

If v = u or v = −u satisfies v(x) ≥ 0 for all x ∈ Ω, we get immediately a
contradiction, by using the maximum principle as before. Therefore, suppose
that u changes sign in Ω. By Lemma 3.1 we know that there are constants t > 0
such that

tϕ1(x) + u(x) ≥ 0 for x ∈ Ω.

Clearly, the set of all these constants t admits a minimum, say t > 0. Define
v = tϕ1 + u. Of course, v(x) ≥ 0 for x ∈ Ω and v 6= 0. Take a constant k with
k ≥ ‖a‖∞, and compute

Lv + kv = λ1tϕ1 + q+u+ − q−u− + ktϕ1 + ku+ − ku−

= λ1(tϕ1 − u−) + (λ1 − q−)u− + (q+ + k)u+ + k(tϕ1 − u−).

As the right hand side of this equation is nonnegative, we see that v satisfies

Lv + kv ≥ 0 in Ω, Bv = 0 on ∂Ω.

Then the maximum principle implies that v(x) > 0 for x ∈ Ω∪Γ1 and (∂v/∂ν)(x)
< 0 for x ∈ Γ0. Lemma 3.1 yields finally the existence of a constant ε > 0 such
that v(x) ≥ εϕ1(x) for x ∈ Ω, thus contradicting the definition of t.

Verification of (B). Set

q(x) = min{b(x), d} for a.e. x ∈ Ω.

Clearly, q ∈ Lp(Ω) and satisfies q(x) ≥ λ1 for a.e. x ∈ Ω, with strict inequality
on a subset of Ω of positive measure, and (q, q) ∈ [a, b] × [c, d]. Then we define
qµ
+ = qµ

− = q for all µ ∈ [0, 1]. In order to prove that condition (iii) holds, we
observe that any nontrivial solution u of

Lu = qu in Ω, Bu = 0 on ∂Ω,

is such that v = u or v = −u satisfies v(x) > 0 for all x ∈ Ω. Now, multiply the
equation by ϕ∗1. Integrating on Ω and recalling Range(L−λ1I) = Ker(L∗−λ1I)⊥

yields ∫
Ω

(q − λ1)uϕ∗1 dx = 0,

which is impossible. �

Proof of Proposition 2.4. Verification of (A). Let u be a nontrivial
solution of

(3.9) Lu = q+u+ − q−u− in Ω, Bu = 0 on ∂Ω.
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As previously observed, it is sufficient to prove that v = u or v = −u satisfies
v(x) ≥ 0 for all x ∈ Ω. Therefore, suppose by contradiction that u changes sign
in Ω. Set r = (λ− − λ1)/(λ+ − λ1) and define w = u+ − su− with

s =
1
r

∫
Ω

u+ϕ1 dx∫
Ω

u−ϕ1 dx
> 0.

Clearly, we have w+ = u+, w− = su− and∫
Ω

(w+ − rw−)ϕ1 dx =
∫

Ω

(u+ − rsu−)ϕ1 dx = 0.

Hence, by Corollary 2.2 of [12], we get∫
Ω

Lu+u+ dx + s2

∫
Ω

Lu−u− dx =
∫

Ω

Lw+w+ dx +
∫

Ω

Lw−w− dx

≥
∫

Ω

λ+(w+)2 dx +
∫

Ω

λ−(w−)2 dx

=
∫

Ω

λ+(u+)2 dx +
∫

Ω

λ−s2(u−)2 dx.

Here and in the sequel, it is understood that∫
Ω

Lv±v± dx =
N∑

i,j=1

∫
Ω

aij
∂v±

∂xi

∂v±

∂xj
dx +

∫
Ω

a0 (v±)2 dx

for any v ∈ H1(Ω). On the other hand, from the equation in (3.9), we have∫
Ω

Lu+u+ dx =
∫

Ω

q+(u+)2 dx and
∫

Ω

Lu−u− dx =
∫

Ω

q−(u−)2 dx.

Hence, we obtain∫
Ω

(λ+ − q+)(u+)2 dx + s2

∫
Ω

(λ− − q−)(u−)2 dx = 0,

which is impossible, because q+(x) ≤ λ+, q−(x) ≤ λ− for a.e. x ∈ Ω, and
q+(x) < λ+, q−(x) < λ− on a common subset of Ω of positive measure.

Verification of (B). Fix a number ϑ such that λ1 < ϑ < min{λ+, λ−} and
set qµ

+ = µb + (1− µ)ϑ and qµ
− = µd + (1−µ)ϑ for µ ∈ [0, 1]. Clearly, conditions

(i) and (ii) are fulfilled. In order to verify (iii), we suppose by contradiction that
the problem

Lu = qµ
+u+ − qµ

−u− in Ω, Bu = 0 on ∂Ω,

has, for some µ ∈ [0, 1], a nontrivial solution u. Using the argument in part A
with b(x) = max{b(x), ϑ} and d(x) = max{d(x), ϑ} for a.e. x ∈ Ω, we find that
v = u or v = −u satisfies v(x) > 0 for all x ∈ Ω. Assume for instance that u is
positive. Hence it satisfies

Lu− λ1u = (qµ
+ − λ1)u in Ω, Bu = 0 on ∂Ω.
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Multiplying the equation by ϕ1 and integrating on Ω, we obtain∫
Ω

(qµ
+ − λ1)uϕ1 dx = 0,

which is impossible since qµ
+(x) ≥ λ1 for a.e. x ∈ Ω, with strict inequality on a

subset of Ω of positive measure. �

Proof of Theorem 2.5. By assumption (f0) we can find functions a, b, c, d

∈ L∞(Ω) such that

a(x) ≤ lim inf
s→∞

f(x, s)/s ≤ lim sup
s→∞

f(x, s)/s ≤ b(x),

c(x) ≤ lim inf
s→−∞

f(x, s)/s ≤ lim sup
s→−∞

f(x, s)/s ≤ d(x),

uniformly a.e. in Ω, which satisfy λ1 ≤ b(x) and λ1 ≤ d(x) for a.e. x ∈ Ω, with
strict inequality on subsets of Ω of positive measure. By assumption (f2), they
can be chosen to satisfy

b(x) ≤ λ+, d(x) ≤ λ−

for a.e. x ∈ Ω, and

b(x) < λ+, d(x) < λ−

on a common subset of Ω of positive measure. Accordingly, by Proposition 2.4
the box [a, b] × [c, d] is admissible. Then the conclusion follows from Theorem
2.2. �

Proof of Corollary 2.6. By the properties of F2, we can find another
point (λ+, λ−) ∈ F2 and constants b > λ1 and d > λ1 such that

lim sup
s→∞

g(s)/s = b < λ+ and lim sup
s→−∞

g(s)/s = d < λ−.

Moreover, observe that if lim infs→∞ g(s) = −∞, then there exists a constant
B > 0, with B ≥ maxΩ α, such that g(B) ≤ h(x) for a.e. x ∈ Ω. Hence, one
easily sees that B is an upper solution satisfying B ≥ α(x) for x ∈ Ω. Similarly,
if lim sups→−∞ g(s) = ∞, then there exists a constant A < 0, with A ≤ minΩ β,
such that g(A) ≥ h(x) for a.e. x ∈ Ω. Hence, A is a lower solution satisfying
A ≤ β(x) for x ∈ Ω. In either case, we can conclude the existence of a solution
by classical results (see e.g. [1], [15]). Accordingly, we can also suppose that

lim inf
s→±∞

g(s)/s ≥ 0.

The conclusion then follows from Theorem 2.5, taking into account that the box
[0, b]× [0, d] is admissible. �
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Proof of Proposition 2.13. For each n, define the following excess func-
tion:

hn(x) =


h(x)− a′n if h(x) > a′n,

0 if |h(x)| ≤ a′n,

h(x) + a′n if h(x) < −a′n,

where we set a′n = an/2. Clearly, we have ‖h− hn‖∞ ≤ a′n. Also, we compute( ∫
Ω

|hn|q dx

)1/q

=
( ∫

Ωn

|h− a′n|q dx

)1/q

≤
( ∫

Ωn

|h|q dx

)1/q

+
( ∫

Ωn

(a′n)q dx

)1/q

,

where Ωn = {x ∈ Ω | |h(x)| ≥ a′n}. If p > q, we can write( ∫
Ωn

|h|q dx

)1/q

≤
( ∫

Ωn

|h|q|h/a′n|p−q dx

)1/q

≤ ‖h‖p/q
Lp /(a′n)p/q−1

and ( ∫
Ωn

(a′n)q dx

)1/q

≤ a′n

( ∫
Ωn

|h/a′n|p dx

)1/q

≤ ‖h‖p/q
Lp /(a′n)p/q−1,

which finally yields
‖hn‖q ≤ 2‖h‖p/q

p /(a′n)p/q−1.

Now, we are in a position to build lower solutions of the type αn = wn+bn+cn/2,
where wn is the solution of

Lwn = −hn in Ω, Bwn = 0 on ∂Ω.

Since p > N and q ∈ ]N/2, p[ (q = 1 if N = 1), we obtain

‖wn‖∞ ≤ c‖hn‖q ≤ 2 c ‖h‖p/q
p /(a′n)p/q−1,

where c is a constant independent of n. Recall that as ϕ1 is constant, we have
a0 = λ1 and Bu = ∂u/∂η. Accordingly, for all n large enough, we have αn(x) ∈
[bn, bn + cn] for x ∈ Ω,

Lαn = Lwn + a0 (bn + cn/2)

≤ −hn − (h− hn) + ‖h− hn‖∞ + λ1αn + λ1‖wn‖∞ + g(x, αn)− a′n − a′n

≤ λ1αn + g(x, αn)− h in Ω

and Bαn = 0 on ∂Ω. �

Proof of Theorem 2.16. The existence of a solution u1 such that

α1(x) ≤ u1(x) ≤ β1(x) for x ∈ Ω

can be established by standard arguments (cf. [1], [15]). It is obvious that the
condition (∂u1/∂ν)(x) ≥ (∂β1/∂ν)(x) for x ∈ Γ0 is fulfilled as well.
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In order to prove the existence of a second solution u2, we apply Theorem
2.2 to a modified problem. Define

f̃(x, s) =

{
f(x, s) if s > u1(x),

f(x, u1(x)) if s ≤ u1(x),

for a.e. x ∈ Ω and every s ∈ R. Clearly, f̃ satisfies

lim
s→−∞

f̃(x, s)/s = 0

and
a(x) ≤ lim inf

s→∞
f̃(x, s)/s ≤ lim sup

s→∞
f̃(x, s)/s ≤ b(x)

uniformly a.e. in Ω. Set c(x) = 0 for x ∈ Ω and suppose, without loss of
generality, that a(x) ≤ λ1 and b(x) ≥ λ1 for a.e. x ∈ Ω, and b(x) > λ1 on a
subset of Ω of positive measure. Hence Proposition 2.3 yields the existence of a
constant d > λ1 such that the box [a, b]× [c, d] is admissible. Theorem 2.2 then
guarantees the existence of a solution u2 of the problem

Lu2 = f̃(x, u2) in Ω, Bu2 = 0 on ∂Ω,

If we prove that u2(x) ≥ u1(x) for all x ∈ Ω, then u2 will be a solution of problem
(2.1) too. Assume by contradiction that minΩ(u2 − u1) < 0. We start observing
that maxΩ(u2 − u1) > 0. Indeed, otherwise we would have

L(u2 − u1) ≥ f̃(x, u2)− f̃(x, u1) = 0 in Ω, B(u2 − u1) ≥ 0 on ∂Ω,

and the global form of the strong maximum principle (cf. Lemma 3.2) would
imply u2 = u1 in Ω. Moreover, it is obvious that minΩ(u2 − u1) < 0 cannot be
attained on Γ0. Accordingly, two cases may occur:

(i) there exist a point x0 ∈ Ω and an open ball B, centered at x0 and
contained in Ω, such that minΩ(u2 − u1) = u2(x0) − u1(x0) ≤ u2(x) −
u1(x) < 0 for x ∈ B, u2 − u1 is not constant in B and L(u2 − u1) ≥ 0
in B, or

(ii) there exist a point x0 ∈ Γ1 and an open ball B contained in Ω, with
x0 ∈ ∂B, such that minΩ(u2−u1) = u2(x0)−u1(x0) < u2(x)−u1(x) < 0
for x ∈ B, and L(u2 − u1) ≥ 0 in B.

In case (i), the interior form of the strong maximum principle (cf. Lemma
3.2) implies that u2 − u1 is constant in B: a contradiction. In case (ii), the
boundary form of the strong maximum principle (cf. Lemma 3.2) implies that
(∂u2/∂ζ)(x0) < (∂u1/∂ζ)(x0) for each ζ satisfying (ζ | ν) > 0, and therefore

0 = (Bu2)(x0) =
∂u2

∂η
(x0) + b0(x0) u2(x0)

<
∂u1

∂η
(x0) + b0(x0)u1(x0) = (Bu1)(x0) ≤ 0;

a contradiction.
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Moreover, according to Theorem 2.2, u2 is such that either u2(x0) ≥ β2(x0)
for some x0 ∈ Ω∪Γ1, or (∂u2/∂ν)(x0) = (∂β2/∂ν)(x0) for some x0 ∈ Γ0. So that
we can conclude that u1 differs from u2, because either there exists x0 ∈ Ω ∪ Γ1

such that
u1(x0) ≤ β1(x0) < β2(x0) ≤ u2(x0),

or there exists x0 ∈ Γ0 such that

∂u1

∂ν
(x0) ≥

∂β1

∂ν
(x0) >

∂β2

∂ν
(x0) =

∂u2

∂ν
(x0). �

Proof of Corollary 2.18. In order to apply Theorem 2.16 we have to
prove that there exist two upper solutions β1, β2 satisfying α1(x) ≤ β1(x) <

β2(x) < α2(x) for x ∈ Ω ∪ Γ1 and (∂β1/∂ν)(x) > (∂β2/∂ν)(x) for x ∈ Γ0.
Assume that in Definition 2.17 the first alternative holds, i.e.

Lβ(x) ≥ f(x, β(x) + s) for a.e. x ∈ Ω and s ∈ [0, δϕ1(x)].

One should proceed similarly in the other case. Set β1 = β and β2 = β +εϕ1, for
some ε ∈ ]0, δ] to be determined later. It is clear that β2 is an upper solution and,
by the properties of ϕ1, that β1(x) < β2(x) for x ∈ Ω ∪ Γ1 and (∂β1/∂ν)(x) >

(∂β2/∂ν)(x) for x ∈ Γ0. Hence, we only have to verify that, for some ε ∈ ]0, δ],

β(x) + εϕ1(x) = β2(x) < α2(x) for x ∈ Ω ∪ Γ1.

In order to prove this, observe that α2(x) − β(x) = 0 for x ∈ Γ0 and α2(x) −
β(x) > 0 for x ∈ Ω ∪ Γ1. If we show that

∂α2

∂ν
(x)− ∂β

∂ν
(x) < 0 for x ∈ Γ0,

Lemma 3.1 will imply that

α2(x)− β(x) ≥ εϕ1(x) for x ∈ Ω,

provided that ε > 0 is chosen small enough. Assume by contradiction that there
exists x0 ∈ Γ0 such that

∂α2

∂ν
(x0)−

∂β

∂ν
(x0) = 0

and set for convenience w = α2 − β − δϕ1, where δ > 0 comes from Definition
2.17. Since (∂w/∂ν)(x0) > 0, we can find an open ball B centered at x0 such that
(∂w/∂ν)(x) > 0 for all x ∈ B ∩Ω, where as usual the normal derivative of w has
been extended to a tubular neighbourhood of Γ0 in Ω. As w(x) = 0 for x ∈ Γ0,
we can conclude that w(x) < 0 for x ∈ B∩Ω, that is, 0 < α2(x)−β(x) < δϕ1(x)
for x ∈ B ∩ Ω. Hence, by Definition 2.17, we get

L(β − α2)(x) ≥ f(x, β(x) + (α2(x)− β(x)))− f(x, α2(x)) = 0
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for a.e. x ∈ B ∩ Ω. The boundary form of the strong maximum principle (cf.
Lemma 3.2) then implies that (∂β/∂ν)(x0) < (∂α2/∂ν)(x0), which is a contra-
diction. �

Proof of Proposition 2.19. First we observe that, by condition (g1) and
Proposition 2.8, for every t and for every r > 0 there exists a lower solution
α2(x) ≥ rϕ1(x) for x ∈ Ω. From a similar argument (see also [27]), we obtain a
lower solution α1(x) ≤ −rϕ1(x) for x ∈ Ω.

Next, we prove that there exists t∗ such that problem (2.4) has an upper
solution β for t = t∗. Set

M = max{|λ1s + g(x, s)| | x ∈ Ω and s ∈ [−1, 1]}.

Let C be a compact subset of Ω, to be specified later, and define the function

h(x) =

{
M for x ∈ Ω \ C,

0 for x ∈ C.

We will show that the solution β of the problem

Lβ = h in Ω, Bβ = 0 on ∂Ω,

is the desired upper solution provided that C is suitably chosen. Indeed, taking
q > N/2, we have, for some constant c > 0,

‖β‖∞ ≤ c‖h‖q = cM |Ω \ C|1/q.

Hence, if C is large enough in Ω, we get β(x) ∈ [−1, 1] for x ∈ Ω. Then we
choose t∗ > 0 such that t∗ϕ1(x) ≥ M for x ∈ C. Accordingly, we have

Lβ(x) ≥ λ1β(x) + g(x, β(x))−M + h(x)

≥ λ1β(x) + g(x, β(x))− t∗ϕ1(x)

for x ∈ Ω, that is, β is an upper solution of (2.4) for t = t∗.
Next we show that if β is an upper solution of (2.4) for some t, with β(x) = 0

for x ∈ Γ0, then β is a strict upper solution for each t > t. We must prove that
one of the conditions of Definition 2.17 is fulfilled. To this end we suppose that
the second alternative of condition (g3) holds. In the other case we proceed
similarly. Fix t > t and compute

Lβ(x) ≥ λ1β(x) + g(x, β(x))− tϕ1(x)

= λ1(β(x) + s) + g(x, β(x) + s)− tϕ1(x)

+ g(x, β(x))− g(x, β(x) + s)− λ1s + (t− t)ϕ1(x)
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for a.e. x ∈ Ω and s ∈ R. Now take a tubular neighbourhood N of Γ0 in Ω such
that |β(x)| ≤ s0/2 for x ∈ N . Then we can find a number δ > 0 so small that,
by the properties of ϕ1, we have

g(x, β(x))− g(x, β(x) + s)− λ1s + (t− t)ϕ1(x)

≥ (−Kδ − λ1δ + t− t)ϕ1(x) ≥ 0 for x ∈ N and s ∈ [0, δϕ1(x)].

On the other hand, using the continuity of g and the properties of ϕ1, we get

g(x, β(x))− g(x, β(x) + s)− λ1s + (t− t)ϕ1(x) ≥ 0

for x ∈ Ω \ N and s ∈ [0, δϕ1(x)]. Hence we derive that β is a strict upper
solution according to Definition 2.17.

In order to conclude the proof we set

t0 = inf{t | problem (2.4) has a solution}.

Note that t0 is a real number. Indeed, it follows from the above discussion that
(2.4) has at least one solution for each t ≥ t∗. Hence t0 < ∞. On the other
hand, if (2.4) has a solution u for some t, multiplying (2.4) by ϕ∗1 and integrating
we obtain

t

∫
Ω

ϕ1ϕ
∗
1 dx =

∫
Ω

g(x, u)ϕ∗1 dx.

Since by (g1) there exist a constant m such that g(x, s) ≥ m for every x ∈ Ω
and s ∈ R, we get

t ≥ m

∫
Ω

ϕ∗1 dx∫
Ω

ϕ1ϕ∗1 dx
,

which implies t0 > −∞.
Finally, for proving that, for every t > t0, problem (2.4) has at least two

solutions, we observe that if (2.4) has a solution ũ for some t̃, then ũ is a strict
upper solution for each t > t̃ and, for the same t, there exist two lower solutions
α1, α2 satisfying α1(x) < ũ(x) < α2(x) for x ∈ Ω∪Γ1. These facts, together with
assumption (g2), allow us to apply Corollary 2.18 in order to get the conclusion.�

Proof of Proposition 2.20. It is similar to the proof of Proposition 2.19,
taking into account Proposition 2.13 and Remark 2.14. �
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