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REAL AND COMPLEX HOMOGENEOUS POLYNOMIAL
ORDINARY DIFFERENTIAL EQUATIONS IN n-SPACE

AND m-ARY REAL AND COMPLEX
NON-ASSOCIATIVE ALGEBRAS IN n-SPACE

F. Brito — Daciberg L. Gonçalves

0. Introduction

There is a long-standing attempt to extend the theory of linear differen-
tial systems that are additively perturbed by higher-order terms to differential
systems whose lowest degree terms are homogeneous forms of degree m with
additive perturbations of degree greater than m. In order to do this, the first
step must be the construction of a complete theory of differential systems whose
rate functions are homogeneous of degree m (and no higher order perturbations).
This will depend upon a full understanding of m-ary algebras over real or com-
plex field, algebras which are commutative, but in general non-associative. The
purpose of this work is to give some contributions to this problem. We will gen-
eralize results of C. Coleman [C1] and L. Markus [Ma]. Namely, the two results
together say:

Theorem. Let A ∼= Rn be an m-ary real algebra. If m = 2 or n is odd, then
A has at least one nilpotent or idempotent element. Moreover, the corresponding
differential system has at least one line of critical points or a pair of opposite
integral rays.
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See [Ma] and [C1]. More information about these algebras and their relations
with differential systems can be found in [R].

We extend this result to the case where m is even without restriction on n.
Namely we prove:

Theorem 3.1. Let S = {ẋi =
∑m

i1,...,im=1 ai
i1,...,im

xi1 . . . xim
: i = 1, . . . , n}

be a homogeneous differential system over R. If m is even then S has either a
line of critical points or two opposite rays which are non-critical integral rays.

Corollary 3.2. Let m be even. Then any real m-ary algebra over Rn has
either a nilpotent or an idempotent element.

In the remaining case where m is odd and n is even, we do not expect the
result to be true without further hypotheses on the system. See Remark (2) of
Section 3. Nevertheless we can show

Theorem 3.3. If the function f(x) = (ẋ1, . . . , ẋn) misses one direction then
S has a line of critical points. Otherwise, if the degree of f is different from 1
then S has two opposite rays which are non-critical integral rays.

Although Theorem 3.1 and Corollary 3.2 are already known (see [BG] and
[C2]), we obtain them easily from the results used to prove Theorem 3.4 and
Corollary 3.5 stated below. Surprisingly, if we look at systems over C, then we
have similar results but basically without restrictions on m and n.

We prove:

Theorem 3.4. Let S = {ẋi =
∑m

i1,...,im=1 ai
i1,...,im

xi1 . . . xim : i = 1, . . . , n}
be a homogeneous differential system over C. Then there exists either a complex
line of critical points or a complex line which is an invariant subset of the system.
Moreover, if m 6= 1 and there is no complex line of critical points, then we can
find ~µ ∈ Cn such that the complex line generated by ~µ contains a pair of opposite
integral rays of the system, namely λ~µ, λ ∈ R+, and λ~µ, λ ∈ R−.

Corollary 3.5. Let A be an m-ary algebra over Cn. Then A has either a
nilpotent or an idempotent element. In the case m 6= 1, if A has no nilpotent
elements then we can find x ∈ A such that µ(x, . . . , x) = λx for some λ ∈ R.

This note is divided in three sections. In Section 1 we recall some relations
between algebras and differential systems.

In Section 2 we study some geometrical problems. Namely, we consider maps
f : S2n+1 → S2n+1 which are Zm-equivariant, where Zm acts freely in the first
sphere and either freely or trivially in the second one.

Then we get some results about the existence of fixed points. We look at
maps f : S2n+1 → S2n+1 which are S1-equivariant and prove that they leave
one orbit invariant.
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In Section 3, we obtain results on differential systems over K and non-
associative algebras over K, where K is the field of real or complex numbers.
See Theorems 3.1, 3.3 and 3.4 and Corollaries 3.2 and 3.5. Finally, we comment
on the case where the field is the quaternions.

We would like to thank Prof. E. Fadell for helpful conversations and sugges-
tions which greatly improved an early version of this work.

1. Differential equations and non-associative algebras

We recall the relation between a special type of differential systems and non-
associative algebras. This relation justifies the study of these algebras. For more
details see [R].

Let

S =
{

ẋi =
m∑

i1,...,im=1

ai
i1,...,im

xi1 . . . xim
: i = 1, . . . , n

}
be a homogeneous polynomial differential system in Kn, where K is the field of
real or complex numbers. We can define an m-ary algebra AS in Kn, where the
m-ary multiplication µS is given, on basis elements, by

µS(ei1 , . . . , eim) =
m∑

i=1

ai
i1,...,im

ei,

where (e1, . . . , en) is the canonical basis of Kn.
Conversely, with every m-ary algebra A there is associated a system SA (see

[R]).

Definition 1.1. An element x ∈ AS is said to be nilpotent if µS(x, . . . , x)
= 0, and idempotent if there exists λ ∈ K, λ 6= 0, such that µS(x, . . . , x) = λx.

We now state two results relating the existence of nilpotent and idempotent
elements in AS to certain properties of the differential system S.

Proposition 1.2. The algebra AS has a nilpotent element x if and only if
the line (K-line) generated by x ∈ Kn is a line of critical points.

Proposition 1.3. An element x ∈ AS is idempotent if and only if the
one-dimensional subspace generated by x is an invariant subspace of the system.
Furthermore, there exists an idempotent element x such that µS(x, . . . , x) = λx

with λ 6= 0 and λ real if and only if there exists a pair of opposite integral rays,
namely {αx : α > 0} and {αx : α < 0} of the system S.

The proofs of Propositions 1.2 and 1.3 are quite straightforward. See [C1],
for example, for the real case.

We will generalize Theorem 10 of [C1], which says:
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Theorem 1.4. Let K = R. If n is odd, then AS has either a nilpotent or an
idempotent element. Moreover, the system S has either a line of critical points
or a pair of opposite integral rays.

2. Vector fields and maps between spheres

We will consider maps which arise from differential systems. As before K is
the field of real or complex numbers.

Let λ ∈ S1 be a primitive mth root of unity, m 6= 1, and Zm the cyclic group
generated by λ. Since S1 acts on S2n+1 ⊂ Cn+1, so does Zm, by restriction.

Proposition 2.1. Let V : S2n+1 → S2n+1 be a continuous map such that
V (αx) = V (x) for all x ∈ S2n+1 and α ∈ Zm. Then V has a fixed point.

Proof. The map V factors through the lens space S2n+1/Zm and therefore
the degree of V is divisible by m. The Lefschetz number of V is 1 − deg(V ) =
1− km 6= 0. Hence, V has a fixed point. �

Corollary 2.2. Let ~V be a vector field over S2n+1 such that ~V (x) =
~V (−x). Then ~V must have at least one singularity.

Proof. The vector field ~V defines a function V : S2n+1 → S2n+1. By
Proposition 2.1 for m = 2 the result follows. �

Proposition 2.3. Let V : S2n+1 → S2n+1 be a continuous map such that
−V (x) = V (−x). Then V is surjective and if deg (V ) 6= 1 then V has a fixed
point.

Proof. Suppose V is not surjective. Take the equator S2n ⊂ S2n+1 which
is perpendicular to the direction y which is not in the image of V . Set V (x) =
PV (x)/‖PV (x)‖ where PV is the orthogonal projection of V (x) onto the sub-
space R2n+1 which contains S2n. So we have a map V : S2n+1 → S2n which
is Z2-equivariant. This contradicts the Borsuk–Ulam theorem. See [D2]. So V

must be surjective. The second part follows trivially from the Lefschetz fixed
point theorem. �

Proposition 2.4. Let V : S2n+1 → S2n+1 be an S1-equivariant map, that
is, V (λx) = λV (x), λ ∈ S1. Then there exist x ∈ S2n+1 and λ ∈ S1 such that
V (x) = λx.
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Proof. Let V1 be the induced map in the quotient space CPn = S2n+1/S1,
and consider the commutative diagram

S1
0

α−−−−→ S1
1y y

S2n+1 V−−−−→ S2n+1y y
CPn V1−−−−→ CPn

where the induced map on the fibre S1
0 is multiplication by α ∈ S1, for some

α. It follows from the homotopy exact sequence that the induced map V1# :
π2(CPn) → π2(CPn) is the identity and therefore, so is V ∗

1 : H2(CPn, Q) →
H2(CPn, Q). Here Q stands for the rational numbers. Hence, the Lefschetz
number of V1 is n+1 6= 0 and so V1 has a fixed point, which implies the result.�

3. Applications

In this section we obtain results on differential systems and consequently, on
m-ary algebras, making use of the results of Section 2.

Theorem 3.1. Let S = {ẋi =
∑m

i1,...,im=1 ai
i1,...,im

xi1 . . . xim : i = 1, . . . , n}
be a homogeneous differential system over R. If m is even then S has either a
line of critical points or two opposite rays which are non-critical integral rays.

Proof. The case of n odd is already known (see [C1]). Hence, assume both
m and n to be even.

Consider the map f(x1, . . . , xn) = (ẋ1, . . . , ẋn) restricted to Sn−1. Assuming
the result does not hold, we have f(x) 6= 0 and f(x) 6= λx for all x ∈ Sn−1 and
λ ∈ R.

Let ~V (x) be the projection of f(x) on the tangent space of Sn−1 at the point
x. So ~V (x) is a non-vanishing vector field which, with no loss of generality, can
be assumed to have norm 1. But, since m is even, f(x) = f(−x) and therefore
~V (x) = ~V (−x), which is, by Corollary 2.2, a contradiction. �

Remarks. (1) The case n = 2 was already known (see Lemma 4 of [Ma]).
(2) If n is even and m is odd, the result does not hold. To see this consider

the following example:

ẋi =

{
−(x2

1 + . . . + x2
n)(m−1)/2xn−i+1, i = 1, . . . , n/2,

(x2
1 + . . . + x2

n)(m−1)/2xn−i+1, i = n/2 + 1, . . . , n.

Corollary 3.2. Let m be even. Then any real m-ary algebra over Rn has
either a nilpotent or an idempotent element.

For the purpose of the next results, let V (x) = (ẋ1, . . . , ẋn)/‖(ẋ1, . . . , ẋn)‖.



332 F. Brito — D. L. Gonçalves

Theorem 3.3. Let S = {ẋi =
∑m

i1,...,im=1 ai
i1,...,im

xi1 . . . xim
: i = 1, . . . , n}

be a homogeneous differential system over R. If m is odd and n is even, and
f(x) = (ẋ1, . . . , ẋn) misses one direction, then S has a line of critical points.
Otherwise, if deg (V ) 6= 1 then S has two opposite rays which are non-critical
integral rays.

Proof. Suppose that f has no singularity outside the origin. Then V (x)
is a well defined map from S2n+1 to S2n+1. Since V (x) is not surjective by
Proposition 2.3, this is a contradiction. So S must have a singularity. Finally, if
S has no singularity outside the origin then V is a well defined map, which by
Proposition 2.3 implies the result. �

Theorem 3.4. Let S = {ẋi =
∑m

i1,...,im=1 ai
i1,...,im

xi1 . . . xim : i = 1, . . . , n}
be a homogeneous differential system over C. Then there exists either a complex
line of critical points or a complex line which is an invariant subset of the system.
Moreover, if m 6= 1 and there is no complex line of critical points, then we can
find ~µ ∈ Cn such that the complex line generated by ~µ contains a pair of opposite
integral rays of the system, namely λ~µ, λ ∈ R+, and λ~µ, λ ∈ R−.

Proof. Suppose S has no singularities outside the origin. Assume first
m 6= 1. Consider V (x1, . . . , xn) = (ẋ1, . . . , ẋn)/‖(ẋ1, . . . , ẋn)‖ restricted to the
sphere S2n−1 ⊂ Cn. Then V satisfies the hypothesis of Proposition 2.1, and
therefore there exists x ∈ S2n−1 such that V (x) = x, which means f(x) = λx for
some λ ∈ R+, where f(x1, . . . , xn) = (ẋ1, . . . , ẋn). The complex line generated
by x proves the theorem.

Assume now m = 1. Proposition 2.4, applied to the map V (x1, . . . , xn) =
(ẋ1, . . . ẋn)/‖(ẋ1, . . . , ẋn)‖, says that there exists x ∈ S2n−1 such that V (x) = αx

for some α ∈ S1. The complex line generated by x proves the result. �

Corollary 3.5. Let A be an m-ary algebra over Cn. Then A has either a
nilpotent or an idempotent element. In the case m 6= 1, if A has no nilpotent
elements then we can find x ∈ A such that µ(x, . . . , x) = λx for some λ ∈ R.

Remarks. (i) For the case m = 1, one cannot expect to get real rays which
are integral rays of the system. Take, for example, ẋ = ix.

(ii) Results like Theorem 3.4 and Corollary 3.5 hold true for the field H of
quaternions and follow directly from the complex case. In terms of algebras we
get the following: every m-ary quaternionic algebra A over Hn has either a nilpo-
tent or an idempotent element, i.e., there exists x ∈ A such that µ(x, . . . , x) = λx

for some λ ∈ C. In case m 6= 1, there exists x ∈ A such that µ(x, . . . , x) = λx

for some λ ∈ R.
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