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POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS
WITH DISCONTINUOUS NONLINEARITIES

Gabriele Bonanno — Salvatore A. Marano

In this paper an existence theorem of positive solutions to the Dirichlet prob-
lem for elliptic equations having nonlinear terms with an uncountable set of dis-
continuities is established. Some applications to special cases, such as problems
with critical Sobolev growth, are also presented. The approach taken is strictly
based on set-valued analysis and fixed point arguments.

1. Introduction

A branch in today’s literature on elliptic boundary value problems deals with
the existence of positive solutions to equations having discontinuous nonlinear-
ities. This field of research exhibits both theoretical interest [3, 5, 6, 17, 21]
and applications to specific models arising from mathematical physics [3, 9, 17].
For nonlinearities of a special kind and discontinuous at a finite or countable
set of points, very complete and satisfactory results are already available; see
for example [6] and the references given there. On the contrary, to the best of
our knowledge, no investigation has been devoted to equations having nonlinear
terms with an uncountable set of discontinuities, probably because in this case
the usual variational techniques are not applicable in a simple way.

The aim of the present paper is to provide a first contribution in the above-
mentioned direction. Accordingly, here, we study an elliptic boundary value
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problem of the type

(P)


−∆u = f(u) + h(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω denotes a bounded domain in Rn, n ≥ 3, with a smooth boundary
∂Ω, h belongs to Lp(Ω) for some p ∈ ]n/2,∞], and f : R → R is a function
whose set of discontinuity points has only Lebesgue measure zero. We look for
solutions to (P) that lie in W 2,p(Ω) ∩W 1,p

0 (Ω) if p < ∞ or in a suitable subset
of

⋂
s>n/2W

2,s(Ω) ∩W 1,s
0 (Ω) if p = ∞.

As in [20], the approach we develop is strictly based on set-valued analysis.
We first consider an appropriate upper semicontinuous convex-valued regulariza-
tion F (x, u) of f(u)+h(x) and, through fixed point arguments, we get a positive
solution u to the elliptic differential inclusion −∆u ∈ F (x, u), x ∈ Ω, vanishing
on ∂Ω. Next, by using a lemma of [10] and a technical condition, we show that u
also satisfies (P). The existence theorem so established (Theorem 3.1) may prof-
itably be employed to study elliptic problems not solvable by means of standard
techniques, such as problems with critical Sobolev growth or problems having
a nonlinearity of exponential type (see Remark 3.5, Theorem 3.3, and Remark
3.9). Moreover, when applied to more concrete situations, it takes very simple
and practical forms. As an example, Theorem 3.2 below immediately yields the
following

Theorem. Let h ≡ 0. Suppose f is bounded and has positive infimum on
R. Then problem (P) admits at least one solution.

2. Definitions and preliminary results

Let X and Y be two nonempty sets. A multifunction Φ from X to Y is a
function from X into the family of all subsets of Y. The graph of Φ, denoted by
gr(Φ), is the set {(x, y) ∈ X × Y : y ∈ Φ(x)}. A function ϕ : X → Y such that
ϕ(x) ∈ Φ(x) for every x ∈ X is called a selection of Φ. For every set W ⊆ Y we
define Φ−(W ) = {x ∈ X : Φ(x) ∩W 6= ∅}. When (X,F) is a measurable space,
Y is a topological space, and for any open subset W of Y one has Φ−(W ) ∈ F,
we say that Φ is measurable. If X and Y are two topological spaces and the
set Φ−(W ) is closed for every closed set W ⊆ Y , the multifunction Φ is said to
be upper semicontinuous. When Y is a compact Hausdorff space and Φ(x) is a
closed subset of Y for all x ∈ X, Theorems 7.1.15 and 7.1.16 of [15] ensure that
Φ is upper semicontinuous if and only if the set gr(Φ) is closed in X × Y .

The following result is an immediate consequence of the Ky Fan fixed point
theorem; see also [4, Theorem 1 and Remark 1].
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Theorem 2.1. Let X be a metrizable locally convex topological vector space
and let K be a weakly compact convex subset of X. Suppose Φ is a multifunction
from K into itself with nonempty convex values and weakly sequentially closed
graph. Then there exists x0 ∈ K such that x0 ∈ Φ(x0).

Proof. Since gr(Φ) is weakly relatively compact and weakly sequentially
closed, Theorem 7 of [16], p. 313, shows that it is also weakly compact. Therefore,
Φ(x) is weakly closed for every x ∈ K and the multifunction Φ is weakly upper
semicontinuous. The Ky Fan fixed point theorem [12, Theorem 1] yields the
desired conclusion. �

If n is a positive integer, Rn denotes the real Euclidean n-space, and V is a
subset of Rn, we write V for the closure of V , ∂V for the boundary of V , co(V )
for the convex hull of V .

Throughout this paper the symbol Ω indicates a nonempty, bounded, open
and connected subset of Rn, n ≥ 3, with a boundary of class C1,1, p ∈ ]n/2,∞[
or p = ∞, and p′ is the conjugate exponent of p. The usual norm of Lp(Ω) is
denoted by ‖ · ‖p. Moreover, “measurable” always means Lebesgue measurable
and |E| stands for the measure of E. The symbol L(Ω) is used for the Lebesgue
σ-algebra of Ω, while, for any nonempty open set A ⊆ R, B(A) is the Borel
σ-algebra of A.

Given a nonnegative integer k and a real number s greater than n/2, we
denote byW k,s(Ω) the space of all real-valued functions defined on Ω whose weak
partial derivatives up to order k lie in Ls(Ω), equipped with the usual norm. The
symbol W 1,s

0 (Ω) stands for the closure of C∞0 (Ω) in the space W 1,s(Ω).

Let L be the linear, second order, elliptic differential operator defined by

Lu = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
,

where: aij ∈ C1(Ω), aij = aji for every i, j = 1, . . . , n, and
∑n

i,j=1 aij(x)ξiξj ≥
ξ21 + ξ22 + . . . + ξ2n for all x ∈ Ω and (ξ1, . . . , ξn) ∈ Rn; bi ∈ L∞(Ω) for every
i = 1, . . . , n.

It is well known that L is a one-to-one operator from W 2,s(Ω) ∩ W 1,s
0 (Ω)

onto Ls(Ω) (see, for instance, [13, Theorem 9.15]). This implies that the set
{u ∈W 2,s(Ω)∩W 1,s

0 (Ω) : Lu ∈ L∞(Ω)} does not depend on s ∈ ]n/2,∞[, as an
easy computation shows. We define

Xp(Ω) =

{
W 2,p(Ω) ∩W 1,p

0 (Ω) if p <∞,

{u ∈W 2,s(Ω) ∩W 1,s
0 (Ω) : Lu ∈ L∞(Ω)} if p = ∞.
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Denote by ωn the volume of the unit ball in Rn and set

β = ess sup
x∈Ω

( n∑
i=1

(
bi(x) +

n∑
j=1

∂aij(x)
∂xj

)2)1/2

.

Owing to Theorem 3.1 of [2], for every u ∈ Xp(Ω) we obtain

(1) sup
x∈Ω

|u(x)| ≤ B‖Lu‖p,

where

(2) B =
1

n2ω
2/n
n

[ ∫ |Ω|

0

(
e−β(r/ωn)1/n

∫ |Ω|

r

s−2+2/neβ(s/ωn)1/n

ds

)p′

dr

]1/p′

.

When β = 0 the constant B becomes [23, Theorem 2 and Remark 1]

(3) B = |Ω|2/n+1/p′−1 Γ(1 + n/2)2/n

n(n− 2)π

[
Γ(1 + p′)Γ(n/(n− 2)− p′)

Γ(n/(n− 2))

]1/p′

,

Γ being the Gamma function.
Finally, a simple argument based on Lemma 1 of [10] and Lemma 7.7 of [13]

yields the following proposition.

Proposition 2.1. Let u ∈W 2,s(Ω) and let E be a measurable subset of R
such that |E| = 0. Then Lu(x) = 0 for almost every x ∈ u−1(E).

3. Existence theorems

We are now in a position to formulate the main result of this paper, which ex-
tends Theorem 3.1 of [20] to the setting of positive solutions for elliptic problems
with discontinuous nonlinearities.

Theorem 3.1. Let f be a real-valued function defined on Ω×R, having the
following properties:

(a1) There exists a set Ω0 ⊆ Ω with |Ω0| = 0 such that the set

Df =
⋃

x∈Ω\Ω0

{z ∈ R : f(x, ·) is discontinuous at z}

has measure zero.
(a2) The function x→ f(x, z) is measurable for all z ∈ R \Df .
(a3) There is r > 0 so that the function m(x) = infz∈Ar

f(x, z), x ∈ Ω, where
Ar = ]0, Br[∩ (R \ Df ) and B is given by (2), is almost everywhere
nonnegative in Ω and strictly positive in a set Ω∗ ⊆ Ω with |Ω∗| > 0.

(a4) The function M(x) = supz∈Ar
f(x, z), x ∈ Ω, belongs to Lp(Ω) and its

norm in this space is less than r.



Positive Solutions of Elliptic Equations 267

(a5) For almost every x ∈ Ω \ Ω∗ and every z ∈ Df ∩ ]0, Br[,

lim inf
w∈Ar,w→z

f(x,w) = 0 implies f(x, z) = 0.

Then there exists a function u ∈ Xp(Ω) satisfying Lu(x) = f(x, u(x)), m(x) ≤
Lu(x) ≤M(x) almost everywhere in Ω, and u(x) > 0 for all x ∈ Ω.

Proof. Assumption (a1) guarantees that R \ Df is dense in R. So, there
is a countable set D ⊆ (R \ Df ) ∩ ]0, Br[ fulfilling D = [0, Br]. For every
(x, z) ∈ Ω× ]0, Br[ we define

F (x, z) =
⋂
k∈N

co(f(x, [z − 1/k, z + 1/k] ∩D)).

Obviously, F (x, z) is a convex closed subset of [m(x),M(x)]. By using hypothesis
(a4) we obtain a set Ω1 ⊆ Ω with |Ω1| = 0 such that 0 ≤ m(x) ≤M(x) <∞ for
all x ∈ Ω \Ω1. Hence, owing to Cantor’s theorem, F (x, z) is also nonempty and
compact whenever x ∈ Ω \ Ω1. Moreover,

(4) F (x, z) = {f(x, z)} for every x ∈ Ω \ Ω0, z ∈ (R \Df ) ∩ ]0, Br[,

as a simple computation shows.
Now, pick x ∈ Ω and (z, y) ∈ ]0, Br[ × R, and choose two sequences {zh} ⊆

]0, Br[ and {yh} ⊆ R satisfying the conditions: yh ∈ F (x, zh) (h ∈ N), limh→∞ zh

= z and limh→∞ yh = y. Since for any k ∈ N there exists a positive integer ν
such that

co(f(x, [zh − 1/(2k), zh + 1/(2k)] ∩D)) ⊆ co(f(x, [z − 1/k, z + 1/k] ∩D))

for every h ≥ ν and yh ∈ co(f(x, [zh − 1/(2k), zh + 1/(2k)] ∩D)) for all h ∈ N,
we get y ∈ F (x, z). Therefore, the multifunction z → F (x, z) has a closed graph
for every x ∈ Ω and is upper semicontinuous when x ∈ Ω \ Ω1.

The preceding arguments, combined with Example 1.3 of [11], produce two
functions ϕ,ψ : Ω× ]0, Br[ → R+

0 having the properties:

(5) F (x, z) = [ϕ(x, z), ψ(x, z)] in (Ω \ Ω1)× ]0, Br[;

for each x ∈ Ω \ Ω1, z → ϕ(x, z) is lower semicontinuous and z → ψ(x, z) is
upper semicontinuous.

The next step is to prove that the multifunction F is L(Ω) ⊗ B(]0, Br[)-
measurable. Let A be an open subset of R. For any k ∈ N one has

{(x, z) ∈ Ω× ]0, Br[ : f(x, [z − 1/k, z + 1/k] ∩D) ∩A 6= ∅}
= {(x, z) ∈ Ω× ]0, Br[ : f(x, [z − 1/k, z + 1/k] ∩D) ∩A 6= ∅}

=
⋃

w∈D

[{x ∈ Ω : f(x,w) ∈ A} × ([w − 1/k,w + 1/k] ∩ ]0, Br[)];
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namely, by the definition of D and assumption (a2),

{(x, z) ∈ Ω× ]0, Br[ : f(x, [z − 1/k, z + 1/k] ∩D)∩A 6= ∅} ∈ L(Ω)⊗B(]0, Br[).

Consequently, the multifunction (x, z) → f(x, [z − 1/k, z + 1/k] ∩D), (x, z) ∈
Ω× ]0, Br[, is L(Ω)⊗B(]0, Br[)-measurable. Theorem 9.1 and Corollary 4.2 of
[14] ensure that the same holds for F . So, in particular, the functions ϕ and ψ

can be supposed to be L(Ω)⊗B(]0, Br[)-measurable.
Set q = p if p <∞, q = s ∈ ]n/2,∞[ otherwise, and define

K = {v ∈ Lq(Ω) : m(x) ≤ v(x) ≤M(x) almost everywhere in Ω}.

Evidently, K is a nonempty convex weakly compact subset of Lq(Ω). Further-
more, owing to (1) and hypothesis (a4), for any v ∈ K one has

|L−1(v)(x)| ≤ B‖v‖p ≤ B‖M‖p < Br, x ∈ Ω.

Since v(x) ≥ m(x) almost everywhere in Ω and assumption (a3) holds, Corollary
I.2 of [18] implies L−1(v)(x) > 0 in Ω. Therefore, it make sense to define

Φ(v) = {w ∈ K : w(x) ∈ F (x, L−1(v)(x)) for almost every x ∈ Ω}, v ∈ K.

We claim that Φ(v) is nonempty. Indeed, the multifunction x→ F (x, L−1(v)(x))
is measurable (see, for instance, [24, Theorem 1]) and so, by the Kuratowski
and Ryll-Nardzewski selection theorem [14, Theorem 5.1], it has a measurable
selection w : Ω → R. The inclusion F (x, L−1(v)(x)) ⊆ [m(x),M(x)], x ∈ Ω,
leads to w ∈ Φ(v), that is, Φ(v) 6= ∅.

Obviously, the set Φ(v) is convex. Moreover, the multifunction Φ has a
weakly sequentially closed graph. To see this, pick v, w ∈ K and choose two
sequences {vh}, {wh} inK fulfilling wh ∈ Φ(vh) for all h ∈ N and limh→∞ vh = v,
limh→∞ wh = w weakly in Lq(Ω). Identity (5) implies

ϕ(x, L−1(vh)(x)) ≤ wh(x) ≤ ψ(x, L−1(vh)(x)) almost everywhere in Ω,

while the weak convergence of {wh} to w produces

lim inf
h→∞

∫
E

(ϕ(x, L−1(vh)(x))− w(x)) dx ≤ lim inf
h→∞

∫
E

(wh(x)− w(x)) dx = 0

for any measurable set E ⊆ Ω. Bearing in mind the Fatou lemma, we get

(6) lim inf
h→∞

(ϕ(x, L−1(vh)(x))− w(x)) ≤ 0 almost everywhere in Ω.

Since L−1 is a continuous operator from Lq(Ω) into W 2,q(Ω) (see, for instance,
[13, Lemma 9.17]) and q > n/2, the Rellich–Kondrashov theorem [1, Theorem
6.2] guarantees that the sequence {L−1(vh)} converges pointwise in Ω to L−1(v).
Therefore, due to (6) and the lower semicontinuity of the function z → ϕ(x, z),
x ∈ Ω \ Ω1, ϕ(x, L−1(v)(x))− w(x) ≤ 0 for almost all x ∈ Ω.
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The same arguments, with ψ in place of ϕ, yield w(x)−ψ(x, L−1(v)(x)) ≤ 0
almost everywhere in Ω. Consequently, by (5), w(x) ∈ F (x, L−1(v)(x)) and the
assertion follows.

We have thus proved that all the hypotheses of Theorem 2.1 hold. So, there
exists a function v ∈ K such that v ∈ Φ(v). The function u = L−1(v) lies in
Xp(Ω) and satisfies the conditions: u(x) > 0 in Ω, owing to assumption (a3) and
Corollary I.2 of [18];

(7) Lu(x) ∈ F (x, u(x)) ⊆ [m(x),M(x)] for almost every x ∈ Ω.

Furthermore, since |Df | = 0, Proposition 2.1 gives

(8) Lu(x) = 0 almost everywhere in u−1(Df ).

Let Ωi ⊆ Ω, i = 2, 3, 4, be such that |Ωi| = 0 for all i, hypothesis (a5)
applies for each x ∈ (Ω \ Ω∗) \ Ω2, (7) is true in Ω \ Ω3, and (8) holds when
x ∈ u−1(Df ) \ Ω4. Define Ω̃ =

⋃4
i=0 Ωi. Evidently, |Ω̃| = 0. Moreover, one

has Lu(x) = f(x, u(x)) for every x ∈ Ω \ Ω̃. To see this, pick x ∈ Ω \ Ω̃. If
u(x) 6∈ Df , then Lu(x) = f(x, u(x)) because Lu(x) ∈ F (x, u(x)) and, by (4),
F (x, u(x)) = {f(x, u(x))}. If u(x) ∈ Df , hypothesis (a5), together with (7) and
(8), leads to Lu(x) = 0 = f(x, u(x)). Hence, in either case, Lu(x) = f(x, u(x)),
and the proof is complete. �

Remark 3.1. The set-valued part of the above proof is adapted from that
of Theorem 1 of [22]. Moreover, similar arguments can be used to establish
Theorem 3.1 with ]0, Br[ and (a4) respectively replaced by ]0, Br] and

(a4)′ The function M(x) = supz∈Ar
f(x, z), x ∈ Ω, belongs to Lp(Ω) and its

norm in this space is less than or equal to r.

In this form, it extends Theorem 2 of [7] to elliptic problems with discontinuous
nonlinearities.

The preceding result gains in interest if we make the following remarks, which
emphasize some important features of its assumptions.

Remark 3.2. The conditions assumed in [3, 5, 6, 9, 21] for the function
f imply that the set Df is at most countable. Therefore, hypothesis (a1) is
fulfilled. On the other hand, several functions f have an uncountable set of
discontinuity points and, nevertheless, satisfy all the assumptions of Theorem
3.1. For instance, this is the case of f : R → R defined by

f(z) =

{
0 if z ∈ C,
1 otherwise,

where C denotes the Cantor “middle third” set.

Remark 3.3. As in [19, Remark 2.1], one can see that hypotheses (a1) and
(a2) do not guarantee the measurability of the function x→ f(x, z) for all z ∈ R.
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Remark 3.4. Although the conclusion of Theorem 3.1 is no longer true
without assuming (a3), there are many examples of elliptic equations where the
nonlinearity does not satisfy (a3) and, nevertheless, can successfully be treated by
other methods; see for instance [5, 6]. However, in these cases the discontinuities
are supposed to be of a very special kind.

Remark 3.5. A condition like (a4) has previously been employed in [7,
19, 20]. Both [19] and [7] deal with the case Df = ∅, while [20] is devoted
to elliptic equations having discontinuous right-hand side. In those papers the
authors showed that this assumption may profitably be used to study elliptic
problems not solvable by means of standard techniques, such as problems with
critical Sobolev growth or problems having a nonlinearity of exponential type;
we refer to Theorem 2.4 and Example 2.1 of [19], Remark 2 and Theorem 3 of
[7], Examples 3.1 and 3.2 of [20]. Evidently, a similar comment also holds for
the present paper.

Remark 3.6. Conditions can easily be drawn from [20, Remark 3.5] so that
the function x → supz∈Ar

f(x, z) is measurable for any r > 0 and hypothesis
(a4) is fulfilled.

Theorem 3.1 has a variety of interesting special cases. As an example, if
f(x, z) = |z|σ−1 + h(x, z), (x, z) ∈ Ω × R, where σ denotes the critical Sobolev
exponent,

σ =
2n
n− 2

,

and h : Ω×R → R satisfies assumptions (a1)–(a3) and (a5) of Theorem 3.1, then
a positive solution u ∈ Xp(Ω) to the equation

Lu = uσ−1 + h(x, u)

can be obtained provided the function x → supz∈Ar
|h(x, z)| lies in Lp(Ω) and

one has

(Br)σ−1|Ω|1−1/p′
+ ‖ sup

z∈Ar

|h(·, z)|‖p < r.

For −L = ∆ (the Laplace operator) and h of Carathéodory’s type, the preceding
equation has been investigated extensively; see for instance [7, 8, 19, 25] and the
references given there.

When the function (x, z) → f(x, z) is independent of x, Theorem 3.1 takes
the simpler and practical form given below.

Theorem 3.2. Let f be a real-valued function defined on R. Assume that:

(b1) The set Df = {z ∈ R : f is discontinuous at z} has measure zero.
(b2) There is r > 0 so that infz∈Ar

f(z) > 0 and |Ω|1−1/p′
supz∈Ar

f(z) < r,
where Ar = ]0, Br[ ∩ (R \Df ).
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Then there exists a positive function u ∈ Xp(Ω) satisfying the equation Lu = f(u)
almost everywhere in Ω.

Remark 3.7. Obviously, any function f : R → R with finite variation and
positive infimum on R has properties (b1) and (b2).

Remark 3.8. We point out that the above result may be proved without
using multifunctions. Indeed, in this case, one can see that the function

ϕ(v)(x) = f(L−1(v)(x)), x ∈ Ω,

is measurable for all v ∈ K, where K is defined as in the proof of Theorem 3.1,
and the operator ϕ : K → K is weakly sequentially continuous. Thus, Theorem
1 of [4] applies.

Finally, consider the problem [6, Section 3]

(Pa,b)


−∆ = uσ−1 + bg(u− a) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where a, b are two positive real numbers and the function g : R → R is defined
by g(z) = 1 if z ≤ 0, g(z) = 0 otherwise. From Theorem 3.2 we easily infer the
following

Theorem 3.3. Suppose

(9) b <
4

n− 2

(
n− 2
n+ 2

)(n+2)/4 (2nπ)(n+2)/4

[|Ω|Γ(1 + n/2)](n+2)/(2n)
.

Then, for every a > 0, problem (Pa,b) admits at least one solution u ∈ X∞(Ω).

Proof. Pick a > 0 and set f(z) = |z|σ−1+bg(z−a), z ∈ R. Since Df = {a},
hypothesis (b1) of Theorem 3.2 is obviously fulfilled. Now, observe that

inf
z∈]0,%[

f(z) ≥ min{aσ−1, b}, sup
z∈]0,%[

f(z) ≤ %σ−1 + b

for any % > 0. Therefore, because of (9), to satisfy assumption (b2) it is sufficient
to choose r = [(n − 2)/(n + 2)](n−2)/4B−(n+2)/4, where B is given by (3) for
p′ = 1. �

Remark 3.9. Problem (Pa,b) has previously been investigated in [6] by
means of variational techniques. In that paper the authors performed a com-
plete and satisfactory study. In particular, in Theorem 3.1, they established the
existence of a constant b∗ > 0 so that problem (Pa,b) is solvable in X∞(Ω) for
every a > 0 if and only if b ≤ b∗. No estimate of such a constant is provided in
[6], whereas Theorem 3.3 above immediately leads to

b∗ ≥ 4
n− 2

(
n− 2
n+ 2

)(n+2)/4 (2nπ)(n+2)/4

[|Ω|Γ(1 + n/2)](n+2)/(2n)
.
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[16] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1965.

[17] H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, Rend.
Circ. Mat. Palermo (2) 20 (1971), 113–138.
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