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ON SETS OF CONSTANT DISTANCE FROM A PLANAR SET

Piotr Pikuta

Abstract. In this paper we prove that d-boundaries

Dd = {x : dist(x, Z) = d}

of a compact Z ⊂ R2 are closed absolutely continuous curves for d greater

than some constant depending on Z. It is also shown that Dd is a tra-
jectory of solution to the Cauchy Problem of a differential equation with

a discontinuous right-hand side.

1. Introduction

Let Z ⊂ R2 be a compact set. For each d > 0 define the d-boundary Dd of Z,
Dd = {x : dist(x, Z) = d}. In [1], the first paper concerning with d-boundaries,
M. Brown showed that for all but countable number of d, every component of Dd
is a point, or a simple arc, or a simple closed curve. It was also proved that Dd
is a 1-manifold for almost all d (see [4] and [6]). If Z is convex, it follows from
[3, Theorem 4.7 (8), p. 434] and [3, Corollary 4.9, p. 440] (see also the statement
before Definition 4.3 of [3]) that Dd is a boundary of a compact convex set, thus
it is a closed curve of class C1,1.
In this paper we prove that d-boundaries of a compact Z are closed absolutely

continuous curves for d greater than some constant depending on Z. The result
can be considered complementary to the Federer’s concept of sets with positive

2000 Mathematics Subject Classification. 57N05, 34A36.

Key words and phrases. d-boundary, absolutely continuous curve, differential equation
with discontinuous right-hand side.

c©2003 Juliusz Schauder Center for Nonlinear Studies

369



370 P. Pikuta

reach (see [3, p. 432]). It is also shown that Dd is a trajectory of solution to the
Cauchy Problem of a differential equation with a discontinuous right-hand side.
In Section 2 we familiarize the reader with the method used and prove lemmas

which we need further to establish our result in Section 3. Some additional
remarks are given in Section 4.

2. Definitions and auxiliary lemmas

Let Dd be a d-boundary of a compact set Z ⊂ R2 and D[a, b] =
⋃
d∈[a,b]Dd

for each a, b such that 0 < a < b. Let Zx,d = {z ∈ Z : dist(z, x) = d}, x ∈ Dd,
d > 0.
Define a multivalued function S:D[a, b]→ 2R2 ,

S(x) = {y ∈ R2 : there exists t ≥ 0 such that x+ ty ∈ coZx,dist(x,Z)},

where coX stands for the convex hull of X.

Lemma 2.1. Multivalued function S defined above is upper semi-continuous
in U = {u ∈ R2 : dist(u, Z) 6= 0}.

Sketch of proof. First prove that the multivalued function

T (x) = Zx,dist(x,Z)

is u.s.c. in U . Then prove that coT (x) and, finally, S(x) are u.s.c. in U . �

With every point x ∈ D[a, b] we will associate a certain vector f(x) ∈ S1 =
{x ∈ R2 : ‖x‖ = 1} so that we can consider and solve the Cauchy problem
with the right-hand side equal to f(x). In general, the vector field f can be
discontinuous, so we will go into differential inclusions to solve the problem.

Lemma 2.2. If (coZ)∩D[a, b] = ∅, then there exists a unique single-valued
function

f :D[a, b]→ S1 = {x ∈ R2 : ‖x‖ = 1}
such that

(a) 〈e, f(x)〉 ≤ 0 for all x ∈ D[a, b] and all e ∈ S(x), and
(b) for fixed plane orientation O and x ∈ D[a, b], there is a unique ex ∈
S(x), ‖ex‖ = 1, for which the following conditions are fulfilled
(b1) the pair of vectors {f(x), ex} has the orientation O, and
(b2) the equality 〈ex, f(x)〉 = 0 holds.

Proof. Since Z is closed and (coZ) ∩ D[a, b] is empty, it follows that the
cone S(x) and the dual cone T (x) = {f ∈ R2 : 〈e, f〉 ≤ 0, for each e ∈ S(x)} are
closed and convex, and S(x) do not contain any (straight) line. Consequently,
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in (S(x) ∩ S1)× (T (x) ∩ S1) one can find exactly two pairs (ex, f(x)) for which
(b2) is satisfied. Uniqueness of ex and f(x) follows from (b1). �

For each x ∈ D[a, b] let us define G(x) consisting of all limit values of f(xn),
when xn → x. Let H(x), x ∈ D[a, b], denote the set of all elements k ∈ S1 such
that there exists e ∈ S(x) for which 〈e, k〉 = 0 and the pair of vectors {e, k} has
the orientation O. Moreover, let F (x) = coG(x) and K(x) = coH(x). Notice
that Lemma 2.1 gives G(x) ⊂ H(x) and, consequently, F (x) ⊂ K(x).
The next two lemmas deal with local solutions to the problem

(1) x′(t) ∈ K(x(t)), a.e. in t ∈ R.

We say that x(t) is a solution to (1) in A if x(t) is absolutely continuous (i.e. x
has a finite derivative a.e. in A) and the inclusion is satisfied a.e. in t ∈ A.

Lemma 2.3. If (coZ)∩D[a, b] = ∅ and x0 ∈ Dd, d ∈ (a, b), then there exists
a local solution to the problem

(2)
x′(t) ∈ K(x(t)), a.e. in t ∈ R,

x(t0) = x0 ∈ D[a, b],

and the trajectory of this (absolutely continuous) solution lies in D[a, b].

Proof. Since F (x) ⊂ K(x), x ∈ D[a, b], we can restrict our attention to the
inclusion x′(t) ∈ F (x(t)). Obviously, f(x) ∈ F (x), F (x) is closed (because G(x)
is closed) and bounded for each x ∈ D[a, b]. Moreover, D[a, b] is closed, hence,
by [5, p. 53, Lemma 16], F is u.s.c. in D[a, b]. Applying [5, p. 60, Theorem 1] we
obtain that the problem (2) has a local solution which trajectory lies in D[a, b].�

Remark 2.4. Let V be a closed neighbourhood of t0. Obviously, V ×D[a, b]
is compact, thus by theorem [5, p. 61, Theorem 2] the solution to (2) can be
extended to the boundary of V × D[a, b]. Since 0 /∈ K(x) for each x ∈ D[a, b],
the trajectory of the solution do not have stationary points and there exists
a neighbourhood W ⊂ D[a, b] of x0 such that the trajectory passing through x0
reaches the boundary of W .

Lemma 2.5. If x0 ∈ Dd and (coZ) ∩ Dd = ∅, then there exists a local
solution to the problem

(3)
x′(t) ∈ K(x(t)), a.e. in t ∈ R,

x(t0) = x0,

and the trajectory of this solution lies in Dd.

Proof. Let us take a, b ∈ R such that 0 < a < b, d ∈ (a, b) and (coZ) ∩
D[a, b] = ∅. By Lemma 2.3, there exists a local solution y(t) to (2). We claim
that the trajectory of y(t) lies in Dd.
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Let w(t) = dist(y(t), Z). Since w(t0) > 0, we have w(t) > 0 in a neighbour-
hood V of t0 and y′(t) exists almost everywhere in V . From [2, Theorem 2.2.1]
it follows that

w′(t) = min
{
〈y(t)− z, y′(t)〉

w(t)
: z ∈ Zy(t),w(t)

}
a.e. in V , where Zy(t),w(t) = {z ∈ Z : ‖y(t)− z‖ = w(t)}. For each f ∈ K(y(t))
there exists z ∈ coZy(t),w(t) such that 〈z − y(t), f〉 = 0, so w′(t) ≤ 0 a.e. in V .
Now, let us change the plane orientation O to the opposite one −O, and

consider the problem

(4) x′(t) ∈ K1(x), x(t0) = x0 ∈ Dd,

withK1(x) being constructed analogously toK(x). Notice thatK1(x) = −K(x),
x ∈ D[a, b]. Thus the solution y(t) to (3) corresponds to a solution (let us call
it y1(t)) to the problem (4) in such a way that both y and y1 have the same
trajectory in a neighbourhood of x0, i.e. y1(t0 + t) = y(t0 − t). For w1(t) =
dist(y1(t), Z) we have

w′1(t) = min
{
〈y1(t)− z, y′1(t)〉

w1(t)
: z ∈ Zy1(t),w1(t)

}
≤ 0

a.e. in a neighbourhood V1 of t0. Since

w′(t0 + t) = −w′1(t0 − t)

we conclude that w′(t) = 0 for almost all t ∈ V ∩ V1. The distance function is
absolutely continuous, so w(t) = dist(y(t0), Z) = d in V ∩ V1. �

3. Main result

Theorem 3.1. There exists a0 > 0 such that d-boundaries Dd of Z ⊂ R2

are closed absolutely continuous curves for all d > a0.

Proof. Since Z is compact there exists a closed ball Ks,r of radius r cen-
tered at s ∈ coZ such that Z ⊂ Ks,r. Let

a0 = sup
k∈∂Ks,r

inf
z∈Z
‖k − z‖,

where ∂Ks,r is the boundary of Ks,r. Suppose d > a0 and notice that (coZ) ∩
Dd = ∅.
The distance function is continuous, so the intersection of Dd and every half-

line starting at s is not empty. Using elementary geometry it is easy to prove
that every such intersection has no more than one point.
For each p ∈ Dd we consider the problem x′(t) ∈ K(x(t)) with x(t0) = p and

obtain the solution which trajectory is an absolutely continuous curve lying in a
neighbourhoodWp of p. By Remark 2.4 the trajectory passing through p reaches
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the boundary of Wp. Let Cp be the smallest cone with vertex s containing two
endpoints of the trajectory passing through p in Wp. The intersection of Wp,
Cp and the trajectory of the solution is a simple arc. Since Dd is compact only
a finite number of (Wp ∩ Cp)’s are needed to cover Dd. Thus Dd is a collection
of a finite number of simple arcs which form a simple closed curve. �

Theorem 3.2. If x0 ∈ Dd and (coZ) ∩Dd = ∅, then
(a) the solution y(t) to the problem (3) solves

(5)
x′(t) = f(x(t)), a.e. in t ∈ R,

x(t0) = x0.

(b) Dd is the trajectory of the solution to the problem (5).

Proof. We will use the notations introduced in the proof of Lemma 2.5.
(a) Since w′(t) = 0 we have

min
{〈
y(t)− z
w(t)

, y′(t)
〉
: z ∈ Zy(t),w(t)

}
= 0

where
y(t)− z
‖y(t)− z‖

=
y(t)− z
w(t)

∈ S(x) ∩ S1.

We only need to apply Lemma 2.2 to prove y′(t) = f(y). Actually, condition (a)
of Lemma 2.2 is fulfilled with e = (z − y(t))/w(t), z ∈ coZy(t),w(t). Because
Zy(t),w(t) is closed there exists zy ∈ Zy(t),w(t) satisfying 〈(y(t)− zy)/w(t), y′(t)〉 =
0 – condition (b2). Finally, the orientation condition (b1) follows from y′(t) ∈
K(x).
(b) follows from (a) and the proof of Theorem 3.1. �

4. Final remarks

Following [4, Theorem 6.1 and its Corollary] we prove the following theorem.

Theorem 4.1. For fixed d > a0 the set {x ∈ Dd : Zx,d has at least 2 points}
is countable.

Proof. For each x ∈ Dd denote by zx1 and zx2 two distinct points of Zx,d
such that {y ∈ R2 : there exists t ≥ 0 such that x+ ty ∈ co {zx1 , zx2}} = S(x).
Let Tx be the triangle with vertices x, zx1 and zx2 . Notice that IntTx 6= ∅. It
is easy to see that for each x, y ∈ Dd, x 6= y, Ty cannot contain any vertex
of Tx. Thus IntTx ∩ IntTy = ∅. A collection of disjoint open subsets of R2 is
countable. �

Corollary 4.2. The set of points of discontinuity of f along the trajectory
of solution to (5) is countable.

Proof. Proof follows from Theorem 4.1 and Lemma 2.1. �
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