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ON WEAK SOLUTIONS FOR SOME MODEL OF MOTION
OF NONLINEAR VISCOUS-ELASTIC FLUID
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Dedicated to the memory of Juliusz P. Schauder

Abstract. We consider the statement of an initial boundary value prob-

lem for a generalized Oldroyd model describing both laminar and turbulent
flows of a nonlinear visco-elastic fluid. The operator interpretation of a

posed problem is presented. The properties of operators forming the corre-
sponding equation are investigated. We introduce approximating operator

equations and prove their solvability. On that base the existence theorem

for the operator equation equivalent to the stated initial boundary value
problem is proved.

Introduction

The system of equations of fluid motion in Cauchy form is well known [1] in
hydrodynamics. Formally speaking, it describes the motion of all kinds of fluids.
However this system contains the tensor of tangent pressure that is not explicitly
expressed in terms of variables of the system. To get such an expression, as a rule,
one involves various hypotheses on the relation between the tensor of tangent
pressure and the tensor of velocities of deformation assuming that for specific
fluids and specific motions those hypotheses should be verified in experiments.
Such a hypothesis, describing both laminar and turbulent motions of a nonlinear
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viscous fluid, was suggested by O. A. Ladyzhenskaya in [2], [3]. Another one,
taking into account the results of certain experiments, is contained in [4].

A lot of models for describing the motion of fluids are based on the so called
constitutive Oldroyd equations [5] (see e.g. [6]–[8] where these equations were
studied and modified). The models, based on those equations take into account
effects of relaxation of pressure after stop and of the delay of deformations.

In this paper we present a certain modification of Oldroyd equations that uni-
fies the approaches of [4] and [9]. The initial-boundary value problem with mixed
boundary conditions, the most natural from physical viewpoint, is investigated.
On a part of the boundary the velocities, and on the other one the surface forces
are given. The similar problems for various versions of Navier–Stokes equations
were investigated in [7] and [10].

Following Ladyshenskaya, we consider the problem of weak solutions. The
existence theorem for a weak solution of the above mentioned initial-boundary
value problem is established. The method of this paper is analogous to that
of [9]. The problem is formulated in terms of a special operator equation, whose
solvability is proved on the basis of a priori estimates and degree theory.

The paper consists of four sections. In the first one we introduce the main
notations and concepts. We describe the formulations of the problem of weak
solutions and of our initial-boundary value problem and consider the constitutive
equation for our model. The functional spaces and operators, used in the paper,
as well as operator equations, equivalent to the problem under consideration,
are also introduced. In the second section the properties of operators involved
in the above operator equation are investigated. In the third section we intro-
duce some approximating operator equations. The existence results for solutions
of those are obtained. In the last section the existence theorem for a solution of
the operator equation, equivalent to the above-mentioned initial-boundary value
problem, is formulated and proved.

1. Formulation of the evolution problem,
equivalent operator equations

Let Ω be a bounded domain in Rn, n = 2, 3. In this paper we consider the
motion of fluid filling the domain Ω, on the time interval (0, T ), T > 0.

1.1. Constitutive equation and formulation of the initial-boundary
value problem. Let v(t, x) be the velocity vector of a particle at the point x
of the space at the time moment t and v1, . . . , vn be components of v. Denote
by E the tensor of velocities of deformations with components

Eij = Eij(v) =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
,
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and by σ = (σij) denote the tensor of tangent pressures (deviator of pressure
tensor).

The character of motion of a fluid is determined by the choice of connection
between E and σ. In [4] W. G. Litvinov considers the following constitutive
relation:

(1.1) σij = 2[ϕ1(U(v)) + ϕ2(I(v), U(Av))]Eij(v),

where I(v) =
∑n

i,j=1(Eij(v))2. This relation contains the function U(v) charac-
terising the motion in domain Ω. If U(v) < a for some positive constant a, then
the motion is laminar. If U(v) > a, then the motion is turbulent. The level a
determines the boundary, where motion becomes turbulent.

In the middle of the fifties Oldroyd [5] suggested a model of a fluid with
constitutive equation(

1 + λ
∂

∂t

)
σ = 2ν

(
1 + æ ν−1 ∂

∂t

)
E , λ, ν,æ > 0.

λ is called the time of relaxation, æ is the time of delay.
More general, nonlinear relations between σ and E are introduced in [6]:(

1 + λ
∂

∂t

)
σ = ϕ(I2(v))E + æ

∂

∂t
(ψ(I2(v))E),

where I2(v) = (I(v))1/2. Expressing σ from this equation and using natural
initial conditions, we obtain

σ =
æ
λ
ψ(I2(v))E +

t∫
0

e−(t−τ)/λ

(
1
λ
ϕ(I2(v))−

æ
λ2
ψ(I2(v))

)
E dτ.

If one denotes

µ(I2(v)) =
1
λ
ϕ(I2(v))−

æ
λ2
ψ(I2(v)),

the relation gets the following form

σ =
æ
λ
ψ(I2(v))E +

t∫
0

e−(t−τ)/λµ(I2(v))E dτ.

The first term corresponds to direct dependence of σ on E , while the second one to
indirect dependence via the effect of “memory” of a fluid. Taking into account
such a form of dependence of σ on E , the constitutive equation is naturally
presented as follows(

1 + λ
∂

∂t

)
σ =

æ
λ

(
1 + λ

∂

∂t

)
(ψ(I2(v))E) + λµ(I2(v))E .
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Combining the above approach with relations (1.1), consider constitutive
equation in the form(

1+λ
∂

∂t

)
σ =

(
1+λ

∂

∂t

)
(2(ϕ1(U(v))+ϕ2(I(v), UA(v)))E(v))−λã(t, x, v,D1v).

Assuming that at the initial moment the fluid satisfies relations (1.1), one can
derive σ from this equation:

σ = 2(ϕ1(U(v)) + ϕ2(I(v), UA(v)))E(v)−
t∫

0

e−(t−τ)/λ ã(τ, x, v(τ), D1v(τ)) dτ.

Introduce the notation

a(t, τ, x, v(τ), D1v(τ)) = e−(t−τ)/λ ã(τ, x, v(τ), D1v(τ)),

and rewrite the constitutive relation as follows

(1.2) σ = 2(ϕ1(U(v)) + ϕ2(I(v), UA(v)))E(v)−
t∫

0

a(t, τ, x, v(τ), D1v(τ)) dτ.

The properties of functions, included in this equality, will be described below.
If the components σij(x) are differentiable in x, then by symbol Divσ we

shall denote the vector( n∑
j=1

∂σ1j

∂xj
,

n∑
j=1

∂σ2j

∂xj
, . . . ,

n∑
j=1

∂σnj

∂xj

)
,

whose coordinates are the divergences of rows of matrix σ = (σij(x)).
Taking into account the constitutive relation (1.2), the fluid motion can be

defined by means of the equation

ρ

(
∂v

∂t
+ vi

∂v

∂xi

)
= −grad p+ Divσ + ϕ, (t, x) ∈ (0, T )× Ω.

Here ρ is the fluid density, p = p(t, x) is the pressure at the point x and time
moment t, ϕ is the vector-function of volume force, acting on the fluid. Besides,
here and further on we shall use the convention of summation on repeating
indices.

The fluid is incompressible, therefore div v = 0 for (t, x) ∈ (0, T )× Ω.
We suppose that the domain Ω is decomposed into open non-intersected

subdomains Ωi, i = 1, . . . ,m, such that Ω =
⋃m

i=1 Ωi, Ωi ∩Ωj = ∅ for i 6= j. Let
the boundary Γ of domain Ω be Lipschitz continuous and Γ1,Γ2 be nonempty
subsets of Γ such that Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅. Let also for each i = 1, . . . ,m
(n− 1)-dimensional measure of intersection Ωi ∩ Γ1 be positive.

The following example of domain Ω and its decomposition
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�
0

b1 b2 bm

Ω1 Ω2 Ωm

Γ2

Γ2

Γ1

Γ1

x1

vv

satisfies all the above-mentioned conditions (see [4]). We suppose that on Γ1

adhesion condition is valid

v |(0,T )×Γ1= 0,

and on Γ2 a force, acting on a fluid surface is given

(−pE + σ)ν |(0,T )×Γ2= Φ,

where ν is a unit external normal to Γ2.
The functions U(v) and UA(v) are defined as follows. Let

U(v)(x) = ki

∫
Ωi

I(v) dy

for x ∈ Ωi with positive constants ki, i = 1, . . . ,m. Denote by P the operator of
continuous prolongation on (−δ, T )×Ω of functions defined on (0, T )×Ω, where
δ > 0. Choose a function ω ∈ C∞(R+) such that ω(y) ≥ 0 for y ∈ R+, ω(y) = 0
for y ∈ [δ,∞). Let h = (

∫ δ

0
ω(τ) dτ)−1 and

ρδ(τ) =

{
hω(τ) for τ ≥ 0,

0 for τ < 0.

Consider the averaging operator with rerspect to variable t

Y (v)(t, x) =

T∫
−δ

ρδ(t− τ)Pv(τ, x) dτ

and introduce the operator UA(v) = U(Y (v)). The motion of a fluid in domain
Ω is completely determined by the following initial-boundary value problem: the
equation of motion

(1.3) ρ

(
∂v

∂t
+ vi

∂v

∂xi

)
= −grad p+ Divσ + ϕ, (t, x) ∈ (0, T )× Ω,
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the constitutive relation

(1.4) σ = 2 (ϕ1(U(v)) + ϕ2(I(v), UA(v)))E(v)−
t∫

0

a(t, τ, x, v(τ), D1v(τ)) dτ,

the incompressibility equation

(1.5) div v = 0, (t, x) ∈ (0, T )× Ω,

the boundary condition on Γ1

(1.6) v |(0,T )×Γ1= 0,

the boundary condition on Γ2

(1.7) (−pE + σ)ν |(0,T )×Γ2= Φ

and the initial condition

(1.8) v(0, x) = v0(x), x ∈ Ω.

Solution of problem (1.3)–(1.8) is a vector-function v and a scalar function p

defined on [0, T ]× Ω and satisfying (1.3)–(1.8).
We suppose, that

(1) the function ϕ1(y) satisfies the conditions

ϕ1(y) is continuous on R+ and ϕ1(y) ≥ 0 for all y ∈ R+,(1.9)

ϕ1(y1) ≥ ϕ1(y2) if y1 ≥ y2,(1.10)

a2y ≥ ϕ1(y) ≥ a1y for y ∈ (a,∞),(1.11)

where a, a1, a2 are positive constants and y1, y2 ∈ R+;
(2) the function ϕ2(y1, y2) satisfies the conditions

ϕ2(y1, y2) is continuous on R2
+,(1.12)

a5y2 + a4 ≥ ϕ2(y1, y2) ≥ a3 for all (y1, y2) ∈ R2
+,(1.13)

ϕ2(y1, y) ≥ ϕ2(y2, y) if y1 ≥ y2,(1.14)

where a3, a4, a5 are positive constants and y1, y2 ∈ R+;
(3) the matrix-function a(t, τ, x, v, w) is defined for all x ∈ Ω, v ∈ Rn,

w ∈ Rn2
and (t, τ) ∈ Td, where

Td = {(t, τ) : t ∈ [0, T ], t ≥ τ ≥ 0}.

(1.15)

{
a is measurable in t, τ , x for all v, w

and is continuous in v, w for almost all t, τ, x,

(1.16) |a(t, τ, x, v, 0)| ≤ L1(t, τ, x) + L2(t, τ, x)|v|,
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where L2 is an essentially bounded function and L1 belongs to class L4

on Qd = Td × Ω;

(1.17) |a(t, τ, x, v, w)− a(t, τ, x, v, w)| ≤ L2(t, s, x)|w − w|

for any (t, s, x) ∈ Qd, v ∈ Rn, w,w ∈ Rn2
.

Note, that condition (1.14) differs from the monotonicity condition of [4]

(1.18) [ϕ2(y2
1 , y2)y1 − ϕ2(y2

3 , y2)y3](y1 − y3) ≥ a2(y1 − y3)2,

for all y1, y2, y3 ∈ R+.

1.2. Principal notations and functional spaces. First we describe the
spaces of functions on Ω used hereinafter:

• L2(Ω) is the set of square integrable functions w : Ω → R; the scalar
product for w, v ∈ L2(Ω) will be denoted by (w, v)L2(Ω),

• W 1
2 (Ω) consists of functions from L2(Ω) with partial derivative of the

first order, belonging to L2(Ω).

Introduce spaces of functions on Ω with values in space Rn. Let now v, w be
functions on Ω with values in Rn.

• L2(Ω)n is the set of functions w : Ω → Rn with coordinates from L2(Ω),
• ‖w‖L2(Ω)n = (

∑n
i=1

∫
Ω
w2

i (x) dx)1/2 is the norm for w ∈ L2(Ω)n,
• W 1

2 (Ω)n is the set of functions w : Ω → Rn with coordinates from
W 1

2 (Ω).

Following [4], introduce V = {v ∈ W 1
2 (Ω)n : v|Γ1 = 0, div v = 0}. V is a

Hilbert space with scalar product

(v, u)V =
∫
Ω

Eij(v)Eij(u) dx.

The corresponding norm is defined by equality

‖v‖ =
( ∫

Ω

I(v) dx
)1/2

.

From Korn’s inequality and the fact, that (n−1)-dimensional measure of in-
tersection Ωi∩Γ1 is positive, it follows that this norm in the space V is equivalent
to the norm induced from the space W 1

2 (Ω)n.
Restrictions of functions from V on Ωi form a space which will be denoted

by Vi. The norm in Vi is defined by the equality

|||v|||i =
( ∫

Ωi

I(v) dx
)1/2

.
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Let H be the closure of V in the norm of space L2(Ω)n, S be the set of
step functions with constant values on each Ωi, i = 1, . . . ,m and V ∗ be the
space conjugate to V . Denote by (f, v) the action of functional f from V ∗ on a
function v from V .

Introduce spaces of functions v : [a, b] → E with values in Banach space E:

• Lp((a, b), E) is the space of functions integrable with degree p ≥ 1, with
the norm

‖v‖Lp((a,b),E) =
( b∫

a

‖v(t)‖p
E dt

)1/p

,

• L∞((a, b), E) is the space of essentially bounded functions with the norm

‖v‖L∞((a,b),E) = vrai max
(a,b)

‖v(t)‖E ,

• C([a, b], E) is the space of continuous functions with the norm

‖v‖C([a,b],E) = max
[a.b]

‖v(t)‖E .

All spaces, mentioned above, are Banach ones. If the interval (a, b) is clear from
context, then the symbols (a, b) in notations of spaces are omitted: Lp(E), L∞(E),
C(E). It is known, that the spaceLq((a, b), E∗) is conjugate toLp((a, b), E), p > 1,
where 1/p+ 1/q = 1.

For a vector-function v from Lp((a, b), V ) denote by vi the coordinate func-
tions, by ∂v/∂t, ∂v/∂xi the first order partial derivatives and by D1v the set of
all derivatives ∂vi/∂xj .

Now we can introduce the principal functional spaces used below.

E2 = L2((0, T ), V ) with the norm ‖v‖E2 = ‖v‖L2((0,T ),V ) for v ∈ E2,

E∗2 = L2((0, T ), V ∗) with the norm ‖f‖E∗2
= ‖f‖L2((0,T ),V ∗) for f ∈ E∗2 ,

E = L4((0, T ), V ) with the norm ‖v‖E = ‖v‖L4((0,T ),V ) for v ∈ E,
E∗ = L4/3((0, T ), V ∗) with the norm ‖f‖E∗ = ‖f‖L4/3((0,T ),V ∗) for f ∈ E∗,
W = {v : v ∈ E, v′ ∈ E∗} with the norm ‖v‖W = ‖v‖E + ‖v′‖E∗ for v ∈W.

The space W is Banach one and it is known (see [11, Theorem 1.17, p. 177]),
that W ⊂ C([0, T ],H).

Denote by 〈f, v〉 the coupling of a functional f from E∗ with a function v

from E, and by 〈f, v〉2 the coupling of a functional f from E∗2 with a function v
from E2.
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1.3. Statement of the problem of weak solutions and equivalent
operator equations. Let us introduce operators in functional spaces using the
following equalities:

• N1 : V → V ∗, (N1(u), h) = 2
∫
Ω
ϕ1(U(u))Eij(u)Eij(h) dx;

• N2 : V × S → V ∗, (N2(u, s), h) = 2
∫
Ω
ϕ2(I(u), s)Eij(u)Eij(h) dx;

• K : V → V ∗,

(K(u), h) = ρ

∫
Ω

uj
∂ui

∂xj
hi dx,

where u, h ∈ V, s ∈ S;

• B : Td × L2(Ω)n × V → V ∗,

(B(t, τ, u, v), h) =
∫
Ω

aij(t, τ, x, u(x), D1v(x))
∂hi

∂xj
(x) dx,

where u ∈ L2(Ω)n, u, h ∈ V .

Let QT = (0, T )× Ω and L2(QT )n = L2(QT ,Rn):

• C : L2(QT )n × E2 → E∗2 , C(u, v) =
∫ t

0
B(t, τ, u(τ), v(τ)) dτ .

Note that E ⊂ E2 and E∗2 ⊂ E∗ imply C : L2(QT )n × E → E∗.
Suppose that n = 2 or n = 3 and

Φ ∈ L4/3((0, T )× Γ2,Rn), ϕ ∈ L4/3((0, T )× Ω,Rn).

These functions define functionals f, F ∈ L4/3((0, T ), V ∗) on V by the equalities:

(F, h) =
∫
Γ2

Φh dx, (f, h) =
∫
Ω

ϕhdx,

for h ∈ V . The definitions are well-posed since h ∈ W 1
2 (Ω)n ⊂ L4(Γ2)n and

h ∈ L4(Ω)n for n = 2, 3.
The weak solution of problem (1.3)–(1.8) is a vector-function v such that

(1.19) v ∈ L4((0, T ), V ), v′ ∈ L4/3((0, T ), V ∗),

(1.20) ρ(v′, h) + (N1(v) +N2(v, UA(v)), h) + (K(v), h)

−
( t∫

0

B(t, τ, v(τ), v(τ)) dτ, h
)

= (F + f, h), for all h ∈ V,

(1.21) v(0) = v0.

Condition (1.19) provides v ∈ W ⊂ C([0, T ],H). Therefore condition (1.21) is
valid for v0 ∈ H.
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Using the Green formula it is possible to check that if v, p is a solution of
problem (1.3)–(1.8), v satisfies conditions (1.19)–(1.21).

Equality (1.20) is equivalent to the operator equation

(1.22) ρv′ +N1(v) +N2(v, UA(v)) +K(v)−
t∫

0

B(t, τ, v(τ), v(τ)) dτ = F + f.

Let k be a positive number whose value will be defined in further arguments.
Substitute v(t) = ektv(t) and multiple the equation by e−kt. We obtain the
equivalent operator equation

ρv′ + ρkv + (N1(ektv) +N2(ektv, UA(ektv)) +K(ektv))e−kt

−
t∫

0

e−ktB(t, τ, ekτv(τ), ekτv(τ)) dτ = F + f,

where F = e−ktF, f = e−ktf .
To simplify the formulae we introduce the notations:

(1.23)

N1(u) = e−ktN1(ektu),

N2(u, s) = e−ktN2(ektu, s), where s ∈ S,
B(t, τ, u, v) = e−kτB(t, τ, ekτu(τ), ekτv(τ)),

K(u) = e−ktK(ektu),

C(u, v) =

t∫
0

e−k(t−τ)B(t, τ, ekτv(τ), ekτv(τ)) dτ

Rewrite the operator equation as follows:

(1.24) ρv′ + ρkv +N1(v) +N2(v, UA(ektv)) +K(v)− C(v, v) = F + f,

Then the problem of weak solution is equivalent to the existence problem for
a solution v ∈W of operator equation (1.24), and the solution should satisfy the
initial conditions

(1.25) v(0) = v0.

2. Studying the properties of operators

In this section the properties of operators from operator equation (1.24) are
investigated.
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2.1. Properties of operators N1 and N2.

Lemma 2.1. If the function ϕ1 satisfies conditions (1.9)–(1.11), for any func-
tion u from E the function N1(u) belongs to E∗. The map N1 : E → E∗ is
bounded, continuous, monotone and the following inequality holds:

(2.1) 〈N1(u), u〉 ≥ C1‖u‖4
E − C0

with constants C0, C1, independent of u.

Proof. To prove continuity and boundedness of the map N1 it is sufficient
to establish the continuity and boundedness of N1 : E → E∗. By definition

〈N1(u), h〉 =

T∫
0

(N1(u(t)), h(t)) dt = 2

T∫
0

∫
Ω

ϕ1(U(u(t)))Eij(u(t))Eij(h(t)) dx dt

for u, h ∈ E. As E(h) ∈ L4((0, T ), L2(Ω)n2
) and ‖E(h)‖L4((0,T ),L2(Ω)n2 ) = ‖h‖E ,

‖N1(u)‖E∗ ≤ ‖ϕ1(U(u))E(u)‖L4/3((0,T ),L2(Ω)n2 ).

Therefore it is sufficient to show the continuity and boundedness of each map

Φij : u 7→ ϕ1(U(u))Eij(u) from E to L4/3((0, T ), L2(Ω)).

For u ∈ E U(u) ∈ L2((0, T ), S). Then, from conditions (1.10) and (1.11),
it follows that ϕ1(U(u)) ∈ L2((0, T ), S) and the map U 7→ ϕ1(U(u)) from E

to L2((0, T ), S) is continuous as a superposition operator by the M. A. Kras-
nosel’skĭı’s theorem [12]. As Eij(u) ∈ L4((0, T ), L2(Ω)), by the Hölder inequality
ϕ1(U(u))Eij(u) ∈ L4/3((0, T ), L2(Ω))and the map Φij is continuous as a product
of continuous maps.

Conditions (1.10), (1.11) imply that

‖ϕ1(U(u(t)))E(u(t))‖L2(Ω)n2 ≤ (a2 max
i
ki‖u(t)‖2

V + ϕ(a))‖E(u(t))‖L2(Ω)n2 .

Therefore ‖ϕ1(U(u))E(u)‖L4/3((0,T ),L2(Ω)n2 ) ≤ C0‖u‖3
E + C1, and the map N1 is

continuous and bounded.
The monotonicity of map N1 follows from representation

〈N1(u)−N1(v), u− v〉 =

T∫
0

e−kt(N1(ektu(t))−N1(ektv(t)), u(t)− v(t) dt

=

T∫
0

e−2kt(N1(u(t))−N1(v(t)), u(t)− v(t)) dt,

where u(t) = ektu(t), v(t) = ektv(t), and from the monotonicity of map N1 :
V → V ∗, established in Lemma 4.1 [4].
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Let us prove estimate (2.1). For u ∈ E and u(t) = ektu(t)

〈N1(u), u〉 =

T∫
0

e−2kt(N1(ektu(t)), ektu(t)) dt =

T∫
0

e−2kt(N1(u(t)), u(t)) dt.

By definition

(N1(u(t)), u(t)) = 2
∫
Ω

ϕ1(U(u(t)))Eij(u(t))Eij(u(t)) dx

= 2ϕ1(ki|||u(t)|||2i )|||u(t)|||2i .

Due to conditions (1.10), (1.11)

ϕ1(ki|||u(t)|||2i )|||u|||2i ≥

{
0 if |||u(t)|||2i ≤ a/ki,

a1ki|||u(t)|||4i if |||u(t)|||2i > a/ki,

and so

ϕ1(ki|||u(t)|||2i )|||u(t)|||2i ≥ a1ki|||u(t)|||4i −
a1a

2

ki

for each i = 1, . . . ,m. As ‖u(t)‖ ≤
∑m

i=1 |||u(t)|||i, we get

(N1(u(t)), u(t)) ≥ 2a1æ ‖u(t)‖4 − C

with C = 2a1a
2 maxi k

−1
i and æ = mini ki.

Coming back to estimate for 〈N1(u), u〉, we obtain

〈N1(u), u〉 ≥
T∫

0

e−2kt(2a1æ ‖u(t)‖4 − C) dt

=

T∫
0

2a1æ e2kt‖u(t)‖4 dt− C

T∫
0

e−2kt dt ≥ 2a1æ ‖u‖4
E − C

1− e−2kT

2k
.

The lemma follows. �

Lemma 2.2. If the function ϕ2 satisfies conditions (1.12)–(1.14), the map
N2 : E2×C([0, T ], S) → E∗2 is continuous and bounded. Besides, for any function
s ∈ C([0, T ], S) the map N2( · , s) : E2 → E∗2 is monotone, coercive and the
following inequality holds

(2.2) 〈N2(u, s)−N2(v, s), u− v〉2 ≥ 2a3‖u− v‖2
E2

for any u, v ∈ E2.

Proof. Consider map N2 : E2 × C([0, T ], S) → E∗2 . By definition

〈N2(u, s), h〉2 = 2

T∫
0

∫
Ω

ϕ2(I(u), s)Eij(u)Eij(h) dx dt
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for u, h ∈ E2, s ∈ C([0, T ], S), therefore in order to prove the continuity and
boundedness of N2 it is necessary to show continuity and boundedness of the
maps (u, s) 7→ ϕ2(I(u), s)Eij(u) from E2 × C([0, T ], S) into L2((0, T ), L2(Ω)).

To prove the continuity we shall consider the map as the composition of
continuous maps u 7→ I(u) from E2 into L1(QT ), u 7→ Eij(u) from E2 into
L2(QT ), and continuous superposition operator Φs : (w, s, E) 7→ ϕ2(w, s)E from
L1(QT ) × C([0, T ], S) × L2(QT ) into L2((0, T ), L2(Ω)). From (1.13) we derive
the estimate:

|ϕ2(w, s)E| ≤ (a5R+ a4)|E| for |s| < R.

From this estimate and M. A. Krasnosel’skĭı’s theorem [12] we obtain that the
superposition operator Φs is continuous. The boundedness of Φs also follows
from this estimate.

Thus, we have established the continuity and boundedness of the map N2

and so of the map N2.
Now establish estimate (2.2). Let u, v ∈ E2 and u(t) = ektu(t), v(t) =

ektv(t). By definition

〈N2(u, s) −N2(v, s), u− v〉2
= 〈e−2kt(N2(u(t), s(t))−N2(v(t), s(t))), u(t)− v(t)〉2

=2
∫

QT

∫
e−2kt(ϕ2(I(u(t)), s(t))Eij(u(t))

− ϕ2(I(v(t)), s(t))Eij(v(t)))(Eij(u(t))− Eij(v(t))) dx dt

=
∫

QT

∫
[e−2kt(ϕ2(I(u(t)), s(t)) + ϕ2(I(v(t)), s(t)))(E(u(t))− E(v(t)))2

+ e−2kt(ϕ2(I(u(t)), s(t))− ϕ2(I(v(t)), s(t)))(Eij(u(t)) + Eij(v(t)))

· (Eij(u(t))− Eij(v(t)))] dx dt.

As (Eij(u(t)) + Eij(v(t)))(Eij(u(t)) − Eij(v(t))) = I(u(t)) − I(v(t)), by condi-
tion (1.18), the second term is nonnegative. Besides, by condition (1.13),

ϕ2(I(u(t)), s(t)) + ϕ2(I(v(t)), s(t)) ≥ 2a3,

therefore

〈N2(u, s)−N2(v, s), u− v〉2 ≥ 2a3

∫
QT

∫
e−2kt(E(u(t))− E(v(t)))2 dx dt

= 2a3

∫
QT

∫
(E(u(t)− v(t)))2 dx dt = 2a3‖u− v‖2

E2
,

as it is formulated in the assertion of lemma.
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Note that N2(0, s) = 0. Then from inequality (2.2) for v = 0 we get the
coercive inequality

(2.3) 〈N2(u, s), u〉2 ≥ 2a0‖u‖2
E2
. �

As embeddings E ⊂ E2 and E∗2 ⊂ E∗ are continuous, under the conditions
of Lemma 2.2 the map N2 : E × C([0, T ], S) → E∗ is continuous and for any
function s ∈ C([0, T ], S) the map N2( · , s) : E → E∗ is monotone.

2.2. Properties of the operator UA.

Lemmma 2.3. The map UA : E2 → C([0, T ], S) is completely continuous.

Proof. Since any bounded closed set in S is compact, by the Arzéla–Askoli
theorem in order to prove the compactness of map under consideration it is suffi-
cient to establish equicontinuity and uniform boundedness of the set of functions
UA(u) for any bounded set of functions u from E2. For any t1, t2 ∈ [0, T ] and
x ∈ Ωl

|UA(u)(t1)− UA(u)(t2)|

=Kl

∫
Ωl

[
I

( T∫
−δ

ρδ(t1 − τ)Pu(τ, x) dτ
)
− I

( T∫
−δ

ρδ(t2 − τ)Pu(τ, x) dτ
)]

dx

=Kl

∫
Ωl

[( T∫
−δ

ρδ(t1 − τ)PEij(u)(τ, x) dτ
)2

−
( T∫
−δ

ρδ(t2 − τ)PEij(u)(τ, x) dτ
)2]

dx

=Kl

∫
Ωl

( T∫
−δ

(ρδ(t1 − τ)− ρδ(t2 − τ))PEij(u)(τ, x) dτ

·
T∫

−δ

(ρδ(t1 − τ) + ρδ(t2 − τ))PEij(u)(τ, x) dτ
)
dx

≤ kl

∫
Ωl

( T∫
−δ

|ρδ(t1 − τ)− ρδ(t2 − τ)||PEij(u)(τ, x)| dτ

·max
τ

|ρδ(t1 − τ) + ρδ(t2 − τ)|
T∫

−δ

|PEij(u)(τ, x)| dτ
)
dx.
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As the function ρδ is bounded, applying the Hölder inequality we obtain

|UA(u)(t1)− UA(u)(t2)|

≤ C1kl

( T∫
−δ

|ρδ(t1 − τ)− ρδ(t2 − τ)|2dτ
)1/2 ∫

Ωl

T∫
−δ

|PEij(u)(τ, x)|2 dτ dx

≤ C2

( T∫
−δ

|ρδ(t1 − τ)− ρδ(t2 − τ)|2dτ
)1/2

‖Pu‖2
E2
.

It is easy to check that

T∫
−δ

|ρδ(t1 − τ)− ρδ(t2 − τ)|2dτ → 0 at |t1 − t2| → 0.

From this and from boundedness of the operator of prolongation P in L2(QT ) it
follows that the functions from the set UA(u) are uniformly continuous. Bound-
edness of the set UA(u) and continuity of the map UA follow from continuity
of U and Y whose composition forms UA. The lemma follows. �

The embedding map E ⊂ E2 is continuous, therefore the map UA : E →
C([0, T ], S) is completely continuous.

2.3. Properties of the map K.

Lemma 2.4. The map K : E → E∗ is continuous and bounded. The map
K : E2 ∩ L4(QT )n → E∗ is continuous. The map K : W → E∗ is completely
continuous. Besides, for any function u ∈ E the following estimate holds:

(2.4) |〈K(u), u〉| ≤ C‖u‖E2‖u‖2
L4(QT )n

with the constant C = ρekT .

Proof. By definition of K for u, h ∈ E

〈K(u), h〉 = ρ

∫
QT

∫
ektuj(t)

∂ui(t)
∂xj

hi(t) dx dt.

Then the continuity of the map K : E2 ∩ L4(QT )n → E∗ follows from that of
the map

u 7→ uj
∂u

∂xj
from E2 ∩ L4(QT )n to L4/3((0, T ), L4/3(Ω)n).

The continuity of embeddings E ⊂ E2, E ⊂ L4(QT )n causes the continuity of
maps K : E → E∗ and K : W → E∗.
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Applying the Hölder inequality we obtain the estimate

|〈K(u), h〉| ≤ ρekT

T∫
0

‖uj(t)‖L4(Ω)

∥∥∥∥∂ui(t)
∂xj

∥∥∥∥
L2(Ω)

‖hi(t)‖L4(Ω) dt

≤ ρekT ‖uj‖L4(QT )

∥∥∥∥ ∂ui

∂xj

∥∥∥∥
L2((0,T ),L2(Ω))

‖hi‖L4(QT ).

From this it follows that the map K is bounded and that for h = u the next
estimate holds:

|〈K(u), h〉| ≤ ρekT ‖u‖E2‖u‖2
L4(QT )n .

Let us prove the compactness of K : W → E∗. Choose an arbitrary bounded
sequence {ul}, ul ∈ W such that ul ⇀ u0 weakly in E. As the embedding
V ⊂ L4(Ω)n is completely continuous for n = 2, 3, by Theorem 2.1 ([13, p. 217])
the embedding W ⊂ L4(QT )n is completely continuous. Therefore, without loss
of generality, we can assume that

ul → u0 strongly in L4(QT )n.

Similarly, as the embedding V ⊂ L2(Γ2)n is completely continuous, the embed-
ding W ⊂ L2((0, T ), L2(Γ2)n) is completely continuous. Therefore let us assume
that

‖ul − u0‖L2((0,T ),L2(Γ2)n) → 0 as l→∞
and show that under these assumptions K(ul) → K(u0) strongly in E∗.

Using the Green formula we obtain from the definition of K:

〈K(ul)−K(u0), h〉 = ρ

∫
QT

∫
ekt(ulj − u0j)(t)

∂uli(t)
∂xj

hi(t) dx dt

+ ρ

∫
QT

∫
ektu0j(t)

(
∂uli

∂xj
− ∂u0i

∂xj

)
(t)hi(t) dx dt

= ρ

∫
QT

∫
ekt(ulj − u0j)(t)

∂uli(t)
∂xj

hi(t) dx dt

− ρ

∫
QT

∫
ekt(uli − u0i)(t)

∂u0j(t)
∂xj

hi(t) dx dt

− ρ

∫
QT

∫
ektu0j(t)(uli − u0i)(t)

∂hi(t)
∂xj

dx dt

+ ρ

T∫
0

( ∫
Γ2

u0j(t)(uli − u0i)(t)hi(t)νj dτ

)
ekt dt,
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where ν is a unit external normal to Γ. Estimate each term in the above expres-
sion. For the first one we have:∣∣∣∣ρ ∫

QT

∫
ekt(ulj − u0j)(t)

∂uli(t)
∂xj

hi(t) dx dt
∣∣∣∣

≤ ρekT |ulj − u0j‖L4(QT )

∥∥∥∥∂uli

∂xj

∥∥∥∥
L2(Qt)

‖hi‖L4(QT ).

The second one is equal to zero, as u0(t) ∈ V and divu0(t) = 0.
For the third term we have the estimate:∣∣∣∣ρ ∫
QT

∫
ektu0j(t)(uli − u0i)(t)

∂hi(t)
∂xj

dx dt

∣∣∣∣
≤ ρekT ‖u0j‖L4(QT )‖uli − u0i‖L4(QT )

∥∥∥∥ ∂hi

∂xj

∥∥∥∥
L2(QT )

.

Estimate the fourth term:

∣∣∣∣ρ
T∫

0

( ∫
Γ2

u0j(t)(uli − u0i)(t)hi(t)νj dτ

)
ekt dt

∣∣∣∣
≤ ρekT ‖u0j‖L4((0,T ),L4(Γ2))‖uli − u0i‖L2((0,T ),L2(Γ2))‖hi‖L4((0,T ),L4(Γ2))

due to continuity of embedding E ⊂ L4((0, T ), L4(Γ2)n).
All the norms in right-hand sides of the above estimates are uniformly bound-

ed, then since we assume that we have chosen the sequence {ul} tending in
L4(QT )n and L2((0, T ), L2(Γ2)n), each term tends to zero as l → ∞ uniformly
with respect to h with ‖h‖E ≤ 1. This provides the strong convergence K(ul) →
K(u0) in E∗. The lemma is proved. �

2.4. Properties of maps B and C.

Lemma 2.5. Let a matrix-function a satisfy conditions (1.15)–(1.17). Then
the maps B and C, defined by (1.23), are continuous, bounded and for any w ∈
L2(QT )n, u ∈ E2, the following estimate holds

(2.5) |〈C(w, u), u〉2| ≤ C(1 + ‖w‖L2(QT )n + ‖u‖E2)‖u‖E2

with a constant C depending on characteristics L1, L2 and on T .

Proof. The operator C can be presented as superposition of continuous
integral operator and B. Therefore it is sufficient to establish continuity and
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boundedness of B : L2(QT )n × E2 → L2(Td, V
∗) defined by the equality

(e−kτB(t, τ, ekτw(τ), ekτu(τ)), h) = (B(t, τ, w(τ), u(τ)), h)

=
∫
Ω

aij(t, τ, ekτw(τ), ekτD1u(τ))
∂hi

∂xj
e−kτ dx

for w ∈ L2(QT )n, u ∈ E2 and h ∈ V .
The continuity and the boundedness of B follows from the continuity and

boundedness of the maps

aij : (w, u) 7→ aij(t, τ, ekτw(τ), ekτD1u(τ))e−kτ

from L2(QT )n ×E2 in L2(Qd). Conditions (1.16) and (1.17) cause the estimate

|e−kτaij(t, τ, ekτw(τ), ekτD1u(τ))| ≤ (e−kτL1 + L2(|w(τ)|+ |D1u(τ)|)).

From this and from M. A. Krasnosel’skĭı’s theorem [12] of continuity of the
superposition operator it follows that each map aij is continuous and bounded,
and consequently this is valid for the map B. Besides,

‖(B(t, τ, w(τ), u(τ)), h)| ≤ (‖L1‖L2(Ω) + ‖L2‖L∞(Qd)(‖w(τ)‖L2(Ω)n

+ ‖D1u(τ)‖L2(Ω)n)‖D1h‖L2(Ω)n .

From this fact and from the definition of C we obtain for w ∈ L2(QT )n, u ∈ E2:

|〈C(w, u), u〉| ≤
T∫

0

t∫
0

e−k(t−τ)|(B(t, τ, w(τ), u(τ)), u(t))| dτ dt

≤
T∫

0

t∫
0

(‖L1(t, τ, · )‖L2(Ω) + ‖L2‖L∞(Qd)(‖w(τ)‖L2(Ω)n

+ ‖D1u(τ)‖L2(Ω)n)) dτ‖D1u(t)‖L2(Ω)n dt

≤C(1 + ‖w‖L2(QT )n + ‖u‖E2)‖u‖E2

with a constant C, depending only on ‖L1‖L2(Qd), ‖L2‖L∞(Qd) and T . �

The following statement is a reformulation of Lemma 2.5 [9].

Lemma 2.6. Let a matrix-function a satisfy conditions (1.15)–(1.17), then
for any functions w ∈ L2(QT )n, u, v ∈ E2, the following estimate holds

(2.6) 〈C(w, u)− C(w, v), u− v〉 ≤ C√
2k
‖u− v‖2

E2

with a constant C independent of k, u, v, w.
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3. Approximating equations and their solvability

In order to construct a family of approximating equations for (1.24) introduce
the operator

N0 : V → V ∗, (N0(u), h) =
∫
Ω

‖u‖2
V Eij(u)Eij(h) dx,

and for ε > 0 consider the equation in the form:

(3.1ε) ρv′ + ρkv +N1(v) +N2(v, UA(ektv))

+ εN0(v) +K(v)− C(v, v) = F + f.

In this section we show that for any k large enough each approximating equa-
tion (3.1ε) with ε > 0 has a solution in W satisfying the initial conditions

(3.2) v(0) = v0.

3.1. Properties of the operator N0.

Lemma 3.1. The map N0 : E → E∗ is continuous, d-monotone and the
following inequality holds

(3.3) ‖N0(u)‖E∗ ≤ ‖u‖3
E for u ∈ E.

By definition [11] the map N0 : E → E∗ is called d-monotone, if for any
u, v ∈ E the following inequality takes place

〈N0(u)−N0(v), u− v〉 ≥ (α(‖u‖E)− α(‖v‖E))(‖u‖E − ‖v‖E)

for some strongly increasing function α on [0,∞).

Proof. Estimate (3.3) follows from the estimate ‖N0(u)‖V ∗ ≤ ‖u‖3 for
u ∈ V . To prove the continuity of maps N0 it is sufficient to show that the
maps Φij : u 7→ ‖u‖V Eij(u) from E in L4/3((0, T ), L2(Ω)) are continuous. The
map Φij is continuous as a product of continuous maps

u 7→ ‖u‖2 from E into L2((0, T )) and

u 7→ Eij(u) from E into L4((0, T ), L2(Ω)).

Hence N0 is continuous.
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Now let us show d-monotonicity of N0. For u, v ∈ V by the Hölder inequality
we get

(N0(u)−N0(v), u− v) =
∫
Ω

(‖u‖2Eij(u)− ‖v‖2Eij(u))(Eij(u)− Eij(v)) dx

=
∫
Ω

(‖u‖2E2(u) + ‖v‖2E2(v)− ‖u‖2Eij(u)Eij(v)

− ‖v‖2Eij(u)Eij(v)) dx

≥‖u‖4 + ‖v‖4 − ‖u‖3‖v‖ − ‖v‖3‖u‖.

Hence, for u, v ∈ E by the Hölder inequality,

〈N0(u) −N0(v), u− v〉

≥
T∫

0

(‖u(t)‖4 + ‖v(t)‖4 − ‖u(t)‖3‖v(t)‖ − ‖v(t)‖3‖u(t)‖) dt

= ‖u‖4
E + ‖v‖4

E −
T∫

0

‖u(t)‖3‖v(t)] dt−
T∫

0

‖v(t)‖3‖u(t)‖ dt

≥ ‖u‖4
E + ‖v‖4

E − ‖u‖3
E‖v‖E − ‖v‖3

E‖u‖E

= (‖u‖3
E − ‖v‖3

E)(‖u‖E − ‖v‖E).

The inequality

(3.4) 〈N0(u)−N0(v), u− v〉 ≥ (‖u‖3
E − ‖v‖3

E)(‖u‖E − ‖v‖E)

for u, v ∈ E proves d-monotonicity of operator N0. �

3.2. The auxiliary problem. Specify the functions s ∈ C([0, T ], S), w ∈
L2(QT )n and consider the auxiliary problem

(3.5)
cρv′ + ρkv +N1(v) +N2(v, s) + εN0(v)− C(w, v) = g,

v(0) = v0,

where g ∈ E∗, v0 ∈ H, ε > 0. Denote by Vk the map

Vk : E × C([0, T ], S)× L2(QT )n → E∗,

Vk(v, s, w) = ρkv +N1(v) +N2(v, s) + εN0(v)− C(w, v).

Then equation (3.5) is equivalent to

(3.6) ρv′ + Vk(v, s, w) = g.
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Lemma 3.2. If conditions (1.9)–(1.17) are fulfilled, the map Vk is continu-
ous and bounded. Besides, the operator Vk( · , s, w) : E → E∗ is d-monotone and
coercive. Problem (3.6), (3.2) has a unique solution v in W , and the correspon-
dence v0 7→ v is continuous as a map from H into C([0, T ],H).

Proof. The map Vk is continuous and bounded since all the maps, whose
sum forms Vk, are continuous and bounded. Now show d-monotonicity of oper-
ator Vk( · , s, w). Let u, v be arbitrary functions from E. Then

(3.7) 〈Vk(u,s, w)− Vk(v, s, w), u− v〉

= ρk

T∫
0

‖u(t)− v(t)‖2
L2(Ω)n dt+ 〈N1(u)−N1(v), u− v〉

+ 〈N2(u, s)−N2(v, s), u− v〉+ ε〈N0(u)−N0(v), u− v〉
− 〈C(u,w)− C(v, w), u− v〉.

By estimate (2.2)

〈N2(u, s)−N2(v, s), u− v〉 ≥ 2a3‖u− v‖2
E2
,

and from estimate (2.6) it follows that

|〈C(w, u)− C(w, v), u− v〉| ≤ C√
2k
‖u− v‖2

E2
.

Therefore, choosing k such that C/
√

2k < a3, we obtain

(3.8) 〈N2(u, s)−N2(v, s), u− v〉 − 〈C(w, u)− C(w, v), u− v〉 ≥ a3‖u− v‖2
E2
.

Note that the choice of k does not depend on s. Nonnegativity of the second
and fourth summands in (3.7) follows from monotonicity of N1 and N0. Thus
we obtain the following estimate

〈Vk(u, s, w)− Vk(v, s, w), u− v〉 ≥ a3‖u− v‖2
E2
.

Besides, from estimate (3.4), it follows that

(3.9) 〈Vk(u, s, w)− Vk(v, s, w), u− v〉 ≥ ε(‖u‖3
E − ‖v‖3

E)(‖u‖E − ‖v‖E)

and that the operator Vk( · , s, w) is d-monotone. To prove coercivity of Vk( · , s, w)
notice that N0(0) = N1(0) = N2(0, s) = 0. Repeating the above estimates for
u = 0 and using estimates (2.1), (2.3), (2.6), (3.3) we obtain the inequality

〈Vk(v, s, w), v〉 ≥ C1‖v‖4
E − C0 − C(1 + ‖v‖E2)‖v‖E2 .

Thus the coercivity inequality takes place

(3.10) 〈Vk(v, s, w), v〉 ≥ C1‖v‖4
E − C(1 + ‖v‖E + ‖v‖2

E)

with some constant C.
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The existence and uniqueness statement for the solution of problem (3.6),
(3.2) and the continuous dependence of this solution on the initial conditions v0

follow from Theorem 1.1 ([11, p. 239]). �

Let us introduce the map

L : W × C([0, T ], S)× L2(QT )n → E∗ ×H,

L(u, s, w) = (ρu′ + Vk(u, s, w), u(0)).

Problem (3.6), (3.2) is equivalent to the equation

(3.11) L(v, s, w) = (g, v0).

By Lemma 3.2 the last equation has a unique solution v for fixed s, w, g, v0.
This means that the map L is invertible in variable v for fixed s, w. Now we can
formulate a statement describing properties of the inverse map.

Theorem 3.1. If conditions (1.9)–(1.17) are fulfilled, then for any functions
s ∈ C([0, T ], S), w ∈ L2(QT )n the map

L( · , s, w) : W → E∗ ×H

is invertible. The inverse map

(g, v0) 7→ L−1(g, v0, s, w)

is continuous as a map from E∗ ×H × C([0, T ], S)× L2(QT )n into W .

Proof. As it is mentioned above, the existence of inverse map L−1 follows
from the assertion of Lemma 3.2. We need to show continuity of L−1. With this
aim we choose arbitrary sequences

{gl} : gl ∈ E∗, gl → g0 strongly in E∗,

{vl} : vl ∈ H, vl → v0 strongly in H,

{sl} : sl ∈ C([0, T ], S), sl → s0 strongly in C([0, T ], S),

{wl} : wl ∈ L2(QT )n, wl → w0 strongly in L2(QT )n.

Denote by vl a solution of equation

(3.11l) L(v, sl, wl) = (gl, v
l).

Then vl = L−1(gl, v
l, sl, wl). It is necessary to prove that {vl} converges in W

to a solution of equation (3.110).
Show that the sequence {vl} is bounded in the norm of space W . By defini-

tion vl is a solution of equation (3.11l), therefore

(3.12) ρv′l + Vk(vl, sl, wl) = gl.
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Functionals from the equality can be applied to the function vl. We obtain

1
2
ρ‖vl(T )‖2

H − 1
2
ρ‖vl(0)‖2

H + 〈Vk(vl, sl, wl), vl〉 = 〈gl, vl〉.

From estimate (3.10) and the equality vl(0) = vl it follows that

1
2
ρ‖vl(T )‖2

H + C1‖vl‖4
E ≤ 1

2
ρ‖vl‖2

H + C(1 + ‖vl‖E2 + ‖vl‖2
E2

) + ‖gl‖E∗‖vl‖E .

As ‖gl‖E∗ , ‖vl‖H are jointly bounded, we get in a routine way that

(3.13) ‖vl‖E ≤ C

with a constant C, independent of l. From equality (3.12) it follows that

v′l =
1
ρ
(gl − Vk(vl, sl, wl)),

therefore the boundedness of ‖v′l‖E∗ follows from estimate (3.13) and the bound-
edness of operator Vk. Hence, the sequence {vl} is bounded in the norm of
space W . Furthermore, without loss of generality we shall assume, that

vl ⇀ v0 weakly in E, v′l ⇀ v′0 weakly in E∗.

Denote by g the function defined by the equality

ρv′l + Vk(v0, s0, w0) = g.

Subtract this equality from (3.12); apply the functionals from this difference to
the function vl − v0:

ρ〈v′l − v′0, vl − v0〉+ 〈Vk(vl, sl, wl)− Vk(v0, s0, w0), v0 − v0〉 = 〈gl − g, vl − v0〉.

Transform the equality to the form:

1
2
ρ‖vl(T )−v0(T )‖2

H−
1
2
ρ‖vl(0)−v0(0)‖2

H+〈Vk(vl, sl, wl)−Vk(v0, sl, wl), vl−v0〉

= 〈Vk(v0, s0, w0)− Vk(v0, sl, wl), vl − v0〉+ 〈gl − g, vl − v0〉.

Using inequality (3.9) we get

1
2
ρ‖vl(T )− v0(T )‖2

H+ ε(‖vl‖3
E − ‖v0‖3

E)(‖vl‖E − ‖v0‖E)

≤ 1
2
ρ‖vl(0)− v0(0)‖2

H + 〈Vk(v0, s0, w0)

− Vk(v0, sl, wl), vl − v0〉+ 〈gl − g, vl − v0〉.

Show that each term in the right-hand side of the inequality tends to zero. This
implies ‖vl‖E → ‖v0‖E as l→∞, hence vl → v0 strongly in E.
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Consider ‖vl(0) − v0(0)‖H . Let χ(t) ∈ C1([0, T ]) and h ∈ V . From the
formula of integration by parts we get

〈(vl − v0)′, χ(t)h〉+ 〈vl − v0, χ
′(t)h〉

= (vl(T )− v0(T ), χ(T )h)− (vl(0)− v0(0), χ(0)h).

Each term in left-hand side of the equality tends to zero: the first one due to the
assumption that v′l ⇀ v′0 weakly in E∗, the second one due to the assumption,
that vl ⇀ v0 weakly in E. Choosing a function χ(t) such that χ(T ) = 0 and
χ(0) = 1, we get: (vl(0)−v0(0), h) → 0 as l→∞. This means that vl(0) ⇀ v0(0)
weakly in V ∗. But vl(0) = vl, and vl → v0. Hence, v0(0) = v0 and vl(0) → v0(0)
strongly in V ∗ and in H as l→∞.

As the map Vk is continuous, Vk(v0, sl, wl) → Vk(v0, s0, w0) strongly in E∗.
From this fact and from weak convergence vl ⇀ v0 in E it follows that

〈Vk(v0, s0, w0)− Vk(v0, sl, wl), vl − v0〉 → 0 as k →∞.

Similarly, the strong convergence gl → g0 in E∗ and weak convergence vl ⇀

v0 in E provide convergence to zero of the expression 〈gl − g, vl − v0〉. So, it is
sufficient to present this expression in the form:

〈gl − g, vl − v0〉 = 〈gl − g0, vl − v0〉+ 〈g0 − g, vl − v0〉.

Thus, it is proved that vl → v0 strongly in E. To finish the proof of the
theorem, it is necessary to show that v′l → v′0 strongly in E∗.

Due to the continuity of map Vk the right-hand sides of equalities

v′l =
1
ρ
(gl − Vk(vl, sl, wl))

converge to (g0 − Vk(v0, s0, w0))/ρ strongly in E∗. Hence, the left-hand sides
of equalities v′l tend strongly in E∗ too, and their limit is equal to the weak
limit v′0. �

3.3. Solvability of approximating equations. Equation (3.1ε) can be
written in form

(3.14) ρv′ + Vk(v, UA(ektv), v) +K(v) = F + f.

Consider the family of operator equations

(3.14η) ρv′ + Vk(v, ηUA(ektv), ηv) + ηK(v) = F + f, η ∈ [0, 1].

For η = 1 the equation of the family coincides with (3.14).
Let us show that the set of solutions of the family of problems (3.14η), (3.2)

is bounded if k is large enough.
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Lemma 3.3. Let conditions (1.9)–(1.17) be fulfilled and k be large enough.
Then there exists a constant C, such that each solution v of problem (3.14η),
(3.2) satisfies the estimate

(3.15) ‖v‖W ≤ C,

and the constant C does not depend on ε ∈ [0, 1] and η ∈ [0, 1].

Proof. Let v be a solution of equation (3.14η) for some η ∈ [0, 1]. Consider
actions of functionals from equality (3.14η) on v:

ρ〈v′, v〉+ 〈Vk(v, ηUA(ektv), ηv), v〉+ η〈K(v), v〉 = 〈F + f, v〉.

From this and from estimate (3.10) we get:

1
2
ρ‖v(T )‖2

H − 1
2
ρ‖v(0)‖2

H + C1‖v‖4
E − C(1 + ‖v‖E2 + ‖v‖2

E2
)

≤ ‖F + f‖E∗‖v‖E − η〈K(v), v〉.

Due to estimate (2.4) and the condition v(0) = v0 we have:

1
2
ρ‖v(T )‖2

H + C1‖v‖4
E ≤ 1

2
ρ‖v0‖2

H + C0 + C(1 + ‖v‖E2)‖v‖E2

+ ‖F + f‖E∗‖v‖E + ηC2‖v‖E2‖v‖2
L4(QT )n .

As embeddings E ⊂ E2 ⊂ L2(QT )n, E ⊂ L4(QT )n are continuous, transform
the inequality to the form:

1
2
ρ‖v(t)‖2

H + C1‖v‖4
E ≤ 1

2
ρ‖v0‖2

H + C(1 + ‖v‖E + ‖v‖2
E + ‖v‖3

E).

Thus it is easy to get the following inequality ‖v‖E ≤ C with constant C de-
pending on k and ‖F + f‖E∗ and independent of η and ε.

The estimate for ‖v′‖E∗ follows from the equality

v′ =
1
ρ
(F + f − Vk(v, ηUA(ektv), ηv)− ηK(v))

and boundedness of maps Vk, UA, K in E. �

Now let us formulate the main statement of this section.

Theorem 3.2. Let conditions (1.9)–(1.17) be fulfilled and k be large enough.
Then for any functions F , f ∈ E∗, v0 ∈ H and arbitrary ε ∈ (0, 1] the prob-
lem (3.1ε), (3.2) has at least one solution v ∈ W , and this solution satisfies the
estimate (3.15).

Proof. Replace the investigation of problem (3.1ε), (3.2) by that of equiv-
alent operator equation

L(v, UA(ektv), v) = (F + f −K(v), v0).
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Apply the map, inverse to L, to both parts of the equality:

(3.16) v = L−1(F + f −K(v), v0, UA(ektv), v).

Note that due to Lemma 2.4 the map v 7→ F + f −K(v) from W into E∗ is
completely continuous. Due to Lemma 2.3 the map UA : v 7→ UA(ektv) from W

into C([0, T ], S) is completely continuous. Besides, the embeddingW ⊂ L2(QT )n

is completely continuous. Then the map

G1 : W →W, G1(v) = L−1(F + f −K(v), v0, UA(ektv), v)

is completely continuous as the superposition of above-mentioned completely
continuous maps and continuous map L−1.

Represent equation (3.16) in the form

(3.17) v −G1(v) = 0.

To investigate its solvability we apply the Leray–Schauder degree theory. Con-
sider the auxiliary family of problems (3.14η), (3.2) and the family of equivalent
operator equations

L(v, ηUA(ektv), ηv) = (F + f − ηK(v), v0), η ∈ [0, 1].

Transform it to the form

v = L−1(F + f − ηK(v), v0, ηUA(ektv), ηv), η ∈ [0, 1].

This family generates the completely continuous homotopy

G : [0, 1]×W →W, G(η, v) = L−1(F + f − ηK(v), v0, ηUA(ektv), ηv)

and can be written in the form

(3.17η) v −G(η, v) = 0, η ∈ [0, 1].

Due to Lemma 3.3 all solutions of equations of the family satisfy a priori
estimate (3.15). Therefore all equations of the family have no solutions on the
boundary of the ball BC+1 ⊂W of radius C + 1 with centre at zero. Hence, for
any η ∈ [0, 1], the degree of map deg(I −G(η, · ), BC+1, 0) is well-posed.

As the degree of map is constant under completely continuous homotopies,

deg(I −G(1, · ), BC+1, 0) = deg(I −G(0, · ), BC+1, 0).

Note, that G(0, v) = L−1(F + f, v0, 0, 0) does not depend on v. Denote this
function by u0. Then

deg(I −G(0, · ), BC+1, 0) = deg(I − u0, BC+1, 0) = deg(I,BC+1, u0).
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As u0 is a solution of (3.170), u0 satisfies a priori estimate (3.15) and so u0 ∈
BC+1. Therefore deg(I,BC+1, u0) = 1 and

deg(I − Φ(1, · ), BC+1, 0) = 1.

Since this degree is not zero, there exists a solution of operator equation (3.171)
or (3.17), and so there exists a solution of problem (3.1ε), (3.2) for any ε ∈ (0, 1].�

4. Of existence of a weak solution of the evolution problem

This section contains the main result of the paper, namely, the statement
of existence of solution of the problem (1.24)–(1.25). This solution is a limit of
solutions of approximating equations (3.1ε) as ε→ 0.

Theorem 4.1. Let conditions (1.9)–(1.17) be fulfilled, then for k large enough
problem (1.24), (1.25) has at least one solution in W .

Proof. Let εl be any sequence of numbers εl ∈ (0, 1] tending to zero. Denote
by vl the solution of approximating equation (3.1εl

) with initial conditions (3.2).
Due to Lemma 3.3 the set of solutions {vl} is bounded. Therefore without loss
of generality we may suppose that

vl ⇀ v0 weakly in E, v′l ⇀ v′0 weakly in E∗.

Besides, suppose that

vl → v0 strongly in L4(QT )n;

K(vl) → y0 strongly in E∗;

UA(ektvl) → y1 strongly in C([0, T ], S),

since the embedding W ⊂ L4(QT )n and the maps K, UA are completely con-
tinuous. Repeating the arguments of the proof of Theorem 3.1 we get that
v0(0) = v0.

Denote by g the function defined by the equality:

ρv′0 + ρkv0 +N1(v0) +N2(v0, UA(ektv0))− C(v0, v0) +K(v0) = g.

Subtract this equality from the equality for vl:

ρv′l + ρkvl +N1(vl) +N2(vl, UA(ektvl))−C(vl, vl) +K(vl) + εlN0(vl) = F + f,

then we get

ρ(v′l − v′0) + ρk(vl − v0) +N1(vl)−N1(v0) +K(vl)−K(v0) + εlN0(vl)

+N2(vl, UA(ektvl))−N2(v0, UA(ektv0))− C(vl, vl) + C(v0, v0)

=F + f − g.
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Consider the action of obtained functionals on the function vl − v0:

ρ〈v′l − v′0, vl − v0〉+ ρk〈vl − v0, vl − v0〉+ 〈N1(vl)−N1(v0), vl − v0〉
+ 〈N2(vl, UA(ektvl))−N2(v0, UA(ektv0)), vl − v0〉
− 〈C(vl, vl)− C(v0, v0), vl − v0〉+ 〈K(vl)−K(v0), vl − v0〉
+ εl〈N0(vl), vl − v0〉 = 〈F + f − g, vl − v0〉.

Transform the equality as follows:

(4.1)
1
2
ρ‖(vl − v0)(T )‖2

H + ρk‖vl − v0‖2
H + 〈N1(vl)−N1(v0), vl − v0〉

+ 〈N2(vl, UA(ektvl))−N2(v0, UA(ektvl)), vl − v0〉
− 〈C(vl, vl)− C(vl, v0), vl − v0〉 = 〈F + f − g, vl − v0〉
+ 〈K(v0)−K(vl), vl − v0〉+ εl〈N0(vl), vl − v0〉
+ 〈N2(v0, UA(ektv0))−N2(v0, UA(ektvl)), vl − v0〉
+ 〈C(vl, v0)− C(v0, v0), vl − v0〉.

Estimate the left-hand side of the equality. By Lemma 2.1 the map N1 is mono-
tone, therefore the third summand is nonnegative. Due to estimate (3.8)

〈N2(vl, UA(ektvl))−N2(v0, UA(ektvl)), vl − v0〉
− 〈C(vl, vl)− C(vl, v0), vl − v0〉 ≥ a3‖vl − v0‖2

E2

under the condition C/
√

2k < a3 for C from estimate (2.6). Thus the left-hand
side of (4.1) is not less than a3‖vl − v0‖2

E2
.

Show that each term in the right-hand side of (4.1) converges to zero as
l→∞. This will imply that vl → v0 strongly in E2.

The first term converges to zero by definition of weak convergence vl ⇀ v0

in E. Rewrite the second one as follows

〈K(v0)−K(vl), vl − v0〉 = 〈y0 −K(vl), vl − v0〉+ 〈K(v0)− y0, vl − v0〉.

The convergence to zero of each obtained term is provided by the assumptions
that K(vl) → y0 strongly in E∗ and vl ⇀ v0 weakly in E.

In the third term in the right-hand side of (4.1) the factors 〈N0(vl), v0 − vl〉
are bounded, therefore as εl → 0 the terms tend to zero.

Represent the fourth summand in the form

〈N2(v0, UA(ektv0)) −N2(v0, UA(ektvl)), vl − v0〉
= 〈N2(v0, UA(ektv0))−N2(v0, y1), vl − v0〉

+ 〈N2(v0, y1)−N2(v0, UA(ektvl)), vl − v0〉.
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The first term here converges to zero by the definition of weak convergence vl ⇀

v0 in E. Note, that from the assumption of strong convergence UA(ektvl) → y1
in C([0, T ], S) we have

N2(v0, UA(ektvl)) → N2(v0, y1) strongly in E∗

due to continuity of map N2. From this and from the assumption of weak
convergence vl ⇀ v0 in E we get the convergence to zero of the second of
obtained terms. So the convergence to zero of the fourth term in the first part
of (4.1) is proved. The last term tends to zero due to the continuity of the
map C. Hence the right-hand side converges to zero. Thus we have established
that

(4.2) vl → v0 strongly in E2.

Transform equality (4.1) to the form:

(4.3)
1
2
ρ‖(vl − v0)(T )‖2

H + ρk‖vl − v0‖2
H + 〈N1(vl)N1(v0), vl − v0〉

= 〈F + f − g, vl − v0〉+ 〈K(v0)−K(vl), vl − v0〉
+ εl〈N0(vl), v0 − vl〉
+ 〈N2(v0, UA(ektv0))−N2(vl, UA(ektvl)), vl − v0〉
+ 〈C(vl, vl)− C(v0, v0), vl − v0〉.

Show that each term in the right hand side of this equality converges to zero as
l→∞. This will imply

(4.4) 〈N1(vl)−N1(v0), vl − v0〉 → 0 at l→∞.

Consider only the fourth and the fifth terms in the right-hand side of (4.3).
From convergence (4.2) and continuity of UA in E2 it follows that

UA(ektvl) → UA(ektv0) strongly in C([0, T ], S).

Then the continuity of map N2 provides the convergence

(4.5) N2(vl, UA(ektvl)) → N2(v0, UA(ektv0)) strongly in E∗.

From the continuity of map C we get the convergence

(4.6) C(vl, vl) → C(v0, v0) strongly in E∗.

These convergences and the weak convergence vl ⇀ v0 in E provide convergence
to zero of the fourth and the fifth terms in the right-hand side of (4.3) and so of
the entire right-hand side. So the convergence (4.4) is established.

Show that

(4.7) N1(vl) → N1(v0) weakly in E∗.
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The sequence {vl} and the mapN1 are bounded, therefore the sequence {N1(vl)}
is also bounded. Without loss of generality let us suppose that

(4.8) N1(vl) ⇀ y2 weakly in E∗.

Consider the difference

〈N1(vl), vl〉 − 〈y2, v0〉 = 〈N1(vl)−N1(v0), vl − v0〉
+ 〈N1(v0), vl − v0〉+ 〈N1(vl)− y2, v0〉.

In the right-hand side of the equality each term converges to zero: the first one
due to (4.4), the second one by the definition of weak convergence vl ⇀ v0 as
l→∞, the third one by the assumption (4.8). Hence,

lim
l→∞

〈N1(vl), vl〉 = 〈y2, v0〉.

Then, due to Lemma 1.3(c) ([11, p. 85]), we have N1(v0) = y2 and so (4.7) holds.
Note also that from convergence (4.2) and the continuity of K in E2 it follows
that

(4.9) K(vl) → K(v0) strongly in E∗.

By definition vl the following equality

ρv′l + ρkvl +N1(vl) +N2(vl, UA(ektvl))−C(vl, vl) +K(vl) + εlN0(vl) = F + f

is fulfilled. Pass to the limit in the sense of weak convergence in E∗ in each term
of this equality. Taking into account (4.5)–(4.7) and (4.9), we receive

ρv′0 + ρkv0 +N1(v0) +N2(v0, UA(ektv0))− C(v0, v0) +K(v0) = F + f.

As v(0) = v0, v is a required solution of problem (1.24)–(1.25). �

Note, that if the terms responsible for the memory effect of a fluid were
omitted, we would get in equality (1.2) W. G. Litvinov’s constitutive relations
from [4]. However, these relations do not include the averaging operator in
variable x. The question whether it is possible to omit this operator was arisen
in [4]. The suggested methods allow us to obtain the existence theorem of a
weak solution of this problem also with replacing condition (1.14) by (1.18).
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[6] Yu. A. Agranovich and P. E. Sobolevskĭı, Motion of nonlinear viscous-elastic fluid,

DAN USSR 314 (1990), 521–525.

[7] N. D. Kopachevsky and S. G. Krein, On one problem of flow of viscous fluid, Z. Anal.

Anwendungen 8 (1989), 557–561.

[8] N. A. Karazeeva, A. A. Kotsiolis and A. P. Splinters, Of dynamic systems,

produced by initial-boundary value problems for equations of motion of linear viscous-

elastic fluids, Boundary Problems of Mathematical Physics, vol. 14, Proc. Steklov Inst.
Math., CLXXXVIII, 1990, pp. 59–87.

[9] V. T. Dmitrienko and V. G. Zvyagin, Topological degree method in the equations of
the Navier–Stokes type, Abstr. Appli. Anal. 1–2 (1997), 1–45.

[10] W. G. Litvinov, Motion of Nonlinear Viscous Fluid, Nauka, 1982.
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