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HARDY’S INEQUALITY IN UNBOUNDED DOMAINS

Fabrice Colin

Abstract. The aim of this paper is to consider Hardy’s inequality with
weight on unbounded domains. In particular, using a decomposition lem-

ma, we study the existence of a minimizer for

Sε(Ω) := inf
u∈D

1,2
ε (Ω)

R
Ω |∇u|2δε dx

R
Ω |u|2δε−2 dx

.

1. Introduction

We shall consider an extension of the following one-dimensional Hardy’s in-
equality: ( ∫ ∞

0

|u(t)|2tε−2 dt

)1/2

≤ 2
1− ε

( ∫ ∞

0

|u′(t)|2tε dt

)1/2

,

where u′ = du/dt and 0 ≤ ε < 1 (see [6]). Let us denote D1,2
ε (Ω), the closure

of D(Ω) for the following inner product:

(u, v) :=
∫

Ω

(δ(x))ε∇u · ∇v dx,

where Ω is a domain in RN with non-empty boundary and where

δ(x) := dist(x, ∂Ω) for all x ∈ RN .
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In the rest of the present paper, we assume that Ω is a domain (bounded or
not), but with compact C2-boundary. Let us denote by Sε(Ω) the best possible
constant for Hardy’s inequality

(1) Sε(Ω) := inf
u∈D1,2

ε (Ω)

∫
Ω
|∇u|2δε dx∫

Ω
|u|2δε−2 dx

and cε the quantity cε := (1− ε)2/4 for 0 ≤ ε < 1.
The main theme of this paper is the connection between the value of Sε(Ω)

and the existence of minimizer for (1). Our main result states that Sε(Ω) is
achieved provided Sε(Ω) < cε. The corresponding result for ε = 0 is due to
Marcus, Mizel and Pinchover ([5]). However our approach is completely different.
As in [3], [7]–[11], we shall use a decomposition lemma. Because of the weight δε,
we shall introduce a quantity that allows us to take simultaneously concentrations
at boundary and at infinity in account. Of course, if we deal with bounded
domains, the last concentration is irrelevant.

2. Preliminaries

Our first step will be to present four lemmas that will be required to define
our functional space.

Lemma 1. Let u in D(R+). Then we have the following Hardy’s inequality:∫ ∞

0

|u(t)|2tε−2 dt ≤ c−1
ε

∫ ∞

0

|u′(t)|2tε dt.

(See [6].) We also need this inequality due to Caffarelli, Kohn and Niren-
berg [2]. In addition, the best constant is given in [11], using the method of
Garcia and Peral ([4]).

Lemma 2. For N ≥ 3, 0 ≤ ε < 1 we have, for all u in D(RN ),∫
RN

|u|2|x|ε−2
dx ≤

(
2

N − 2 + ε

)2 ∫
RN

|∇u|2|x|ε dx.

Throughout the rest of this paper we shall assume that

(H) Ω is a domain with compact boundary of class C2.

We give now some auxiliary results due to Brezis and Marcus ([1]) that will be
needed later on. For β > 0 let,

Ωβ := {x ∈ Ω : δ(x) < β}, Σβ := {x ∈ Ω : δ(x) = β}.

Assuming that β is sufficiently small, say β < β0, for every x ∈ Ωβ there exists
a unique point σ(x) ∈ Σ := ∂Ω such that δ(x) = |x − σ(x)|. Let Π : Ωβ →
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(0, β)×Σ be the mapping defined by Π(x) = (δ(x), σ(x)). This mapping is a C2

diffeomorphism and its inverse is given by

Π−1(t, σ) = σ + tν(σ) for all (t, σ) ∈ (0, β)× Σ,

where ν(σ) is the inward unit vector normal to Σ at σ. For 0 < t < β0, let
Ht denote the C2 diffeomorphism Π−1(t, · ) of Σ onto Σt. We know that its
Jacobian satisfies

(2) |Jac Ht(σ)− 1| ≤ ct for all (t, σ) ∈ (0, β0)× Σ,

where c is a constant relying only on Σ, β0 and the choice of local coordinates.
Since ν(σ) is orthogonal to Σt = Π−1(t, Σ) at σ+ tν(σ), it follows that, for every
integrable non-negative function f in Ωβ ,∫

Ωβ

f =
∫ β

0

dt

∫
Σt

f dσt =
∫ β

0

dt

∫
Σ

f(t,Ht(σ))(Jac Ht) dσ,

where dσ, dσt denote surface elements on Σ, Σt, respectively. Consequently,
by (2),∫

Σ

dσ

∫ β

0

f(t,Ht(σ))(1− ct) dt ≤
∫

Ωβ

f dt(3)

≤
∫

Σ

dσ

∫ β

0

f(t, Ht(σ))(1 + ct) dt.

Now, we are able to present the following generalization of an inequality due to
Brezis and Marcus ([1]).

Lemma 3. Under assumption (H), for 0 < β < β0, we have the following
inequality∫

Ωβ

|∇u|2δε dx ≥ (cε + o(1))
∫

Ωβ

|u|2δε−2 dx for all u ∈ D(Ω),

where o(1) is a quantity which tends to zero as β → 0.

Proof. By (3), Lemma 1 and the fact that |∇u(t, Ht(σ))| ≥ |u′(t,Ht(σ))|,∫
Ωβ

|∇u|2δε dx ≥
∫

Σ

dσ

∫ β

0

|∇u(t, Ht(σ))|2tε(1− ct) dt

≥ cε

∫
Σ

dσ

∫ β

0

|u(t, Ht(σ))|2

t2−ε
(1− ct) dt

= cε

∫
Σ

dσ

∫ β

0

|u(t, Ht(σ))|2

t2−ε
(1 + ct) dt

− cε

∫
Σ

dσ

∫ β

0

|u(t, Ht(σ))|2

t2−ε
2ct dt
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≥ cε

∫
Σ

dσ

∫ β

0

|u(t,Ht(σ))|2

t2−ε
(1 + ct) dt

− 2cβcε

∫
Σ

dσ

∫ β

0

|u(t, Ht(σ))|2

t2−ε
dt

≥ cε

∫
Ωβ

|u|2δε−2 dx +
(−2cβcε)
(1− cβ)

∫
Ωβ

|u|2δε−2 dx,

using (2) and again (3). �

Lemma 4. There exists c > 0 such that∫
Ω

|u|2δε−2 dx ≤ c

∫
Ω

|∇u|2δε dx for all u ∈ D(Ω).

Proof. As in Lemma 3, take 0 < β < β0 and let us divide Ω into three
parts:

Ωβ ,ΩR := Ω \B(0, 5R) and K := Ω \ (Ωβ ∪ ΩR),

where R is taken sufficiently large to have ∂Ω ⊂ B(0, R). On ΩR and Ωβ desired
inequalities follow respectively from Lemma 2 and Lemma 3. On the compact
set K, we just have to use the Poincare’s inequality (see [9] or [10]) and the fact
that the minimum value of δ(x) is achieved in K. �

Definition 1. For N ≥ 3 and for Ω ⊂ RN , let D1,2
ε (Ω) be the completion

of D(Ω) with respect to the inner product

(u, v) :=
∫

Ω

δε∇u · ∇v dx.

Finally, let us recall that

Sε(Ω) := inf
u∈D1,2

ε (Ω)

∫
Ω
|∇u|2δε dx∫

Ω
|u|2δε−2 dx

and, by Lemma 4, Sε(Ω) > 0.

3. Minimizing sequences for Sε(Ω)

In order to prove that Sε(Ω) is achieved if Sε(Ω) < cε, we can consider an
arbitrary minimizing sequence (un) ⊂ D1,2

ε (Ω):

(4) |δ(ε−2)/2un|2 = 1, |δε/2∇un|
2

2 → Sε(Ω), n →∞.

Going if necessary to a subsequence, we may assume un ⇀ u in D1,2
ε (Ω), so that

|δε/2∇u|
2

2 ≤ lim|δε/2∇un|
2

2 = Sε(Ω).

Hence u is a minimizer provided |δ(ε−2)/2u|2 = 1. But we know only that
|δ(ε−2)/2u|2 ≤ 1.
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Lemma 5. Under assumption (H), let (un) ⊂ D1,2
ε (Ω) be a sequence such that

un ⇀ u in D1,2
ε (Ω),

|∇(un − u)|2δε ⇀ µ in M(Ω),

un → u a.e. on Ω.

Define

µB,∞ := lim
β→0+

lim
n→∞

( ∫
Ωβ

|∇un|2δε dx +
∫
|x|>β−1

|∇un|2δε dx

)
,(5)

νB,∞ := lim
β→0+

lim
n→∞

( ∫
Ωβ

|un|2δε−2 dx +
∫
|x|>β−1

|un|2δε−2 dx

)
.(6)

It follows that

νB,∞ ≤ c−1
ε µB,∞,(7)

lim
n→∞

|δε/2∇un|
2

2 = |δε/2∇u|
2

2 + µB,∞ + ‖µ‖,(8)

lim
n→∞

|δ(ε−2)/2un|
2

2 = |δ(ε−2)/2u|
2

2 + νB,∞.(9)

Proof. (a) Assume first u = 0. Take 0 < β < β0/2 such that ∂Ω ⊆
B(0, β−1) and let Ψβ ∈ C∞(RN ), 0 ≤ Ψβ(x) ≤ 1 on Ω, be such that

• Ψβ(x) = 1, for |x| > 5β−1 + 1 and for x ∈ Ωβ ,
• Ψβ(x) = 0, for x ∈ Ω \ Ω2β such that |x| < 5β−1.∫

|Ψβ(x)un|2δε−2 dx =
∫

Ω2β

|Ψβun|2δε−2 dx +
∫
|x|≥5β−1

|Ψβun|2δε−2 dx

≤
∫

Ω2β

|Ψβun|2δε−2 dx +
∫
|x|≥5β−1

|Ψβun|2(|x| − β−1)
ε−2

dx

because if |x| ≥ 5β−1 then δ(x)/2 ≤ |x| − β−1 ≤ δ(x). So we have∫
|Ψβun|2δε−2 dx ≤ (cε + o(1))−1

∫
Ω2β

|∇Ψβun|2δε dx

+
(

2
N − 2 + ε

)2 ∫
|x|≥5β−1

|∇Ψβun|2δε dx

≤ (cε + o(1))−1

∫
|∇Ψβun|2δε dx,

by Lemmas 2 and 3. On the other hand, we have

lim
n→∞

∫
|∇Ψβun|2δε dx

= lim
n→∞

( ∫
|∇un|2Ψ2

βδε dx +
∫
|Ψβ |2u2

nδε dx + 2
∫

(∇Ψβ · ∇un)Ψβunδε dx

)
= lim

n→∞

∫
|∇un|2Ψ2

βδε dx
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because un → 0 in L2
Loc. Consequently, we obtain

(10) lim
n→∞

∫
|un|2Ψ2

βδε−2 dx ≤ (cε + o(1))−1 lim
n→∞

∫
|∇un|2Ψ2

βδε dx.

Letting ω1 := Ωβ ∪ (RN \B(0, 5β−1 + 1)) and ω2 := Ω2β ∪ (RN \B(0, 5β−1)), it
becomes obvious that∫

ω1

|∇un|2δε dx ≤
∫
|∇un|2Ψ2

βδε dx≤
∫

ω2

|∇un|2δε dx,∫
ω1

|un|2δε−2 dx ≤
∫
|un|2Ψ2

βδε−2 dx ≤
∫

ω2

|un|2δε−2 dx.

We obtain from (5) and (6)

µB,∞ = lim
β→0+

lim
n→∞

∫
|∇un|2Ψ2

βδε dx,

νB,∞ = lim
β→0+

lim
n→∞

∫
|un|2Ψ2

βδε−2 dx.

Inequality (7) follows directly from (10).
(b) Let us now consider the general case. For more convenience, let us write

Ω
′

β := Ωβ ∪ (RN \B(0, β−1)) and vn := un − u. Since

lim
n→∞

∫
Ω
′
β

|∇vn|2δε dx = lim
n→∞

∫
Ω
′
β

|∇un|2δε dx−
∫

Ω
′
β

|∇u|2δε dx,

we obtain

lim
β→0+

lim
n→∞

∫
Ω
′
β

|∇vn|2δε dx = µB,∞.

By the Brézis–Lieb Lemma (see [9] or [10]), we have∫
Ω
′
β

|u|2δε−2 dx = lim
n→∞

( ∫
Ω
′
β

|un|2δε−2 dx−
∫

Ω
′
β

|vn|2δε−2 dx

)
,

so

lim
β→0+

lim
n→∞

∫
Ω
′
β

|vn|2δε−2 dx = νB,∞.

Inequality (7) follows directly from the corresponding inequality for (vn).
(c) Since vn ⇀ 0 in D1,2

ε (Ω), we have

|∇un|2δε ⇀ µ + |∇u|2δε in M(Ω).

Again by Brézis–Lieb Lemma, we have for every nonnegative h ∈ D(Ω)∫
|hu|2δε−2 dx = lim

n→∞

( ∫
|hun|2δε−2 dx−

∫
|hvn|2δε−2 dx

)
hence

|un|2δε−2 ⇀ |u|2δε−2 in M(Ω),
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because un → 0 in L2
Loc. Let us take β as in (a). We have

lim
n→∞

∫
|∇un|2δε dx = lim

n→∞

( ∫
Ψ2

β |∇un|2δε dx +
∫

(1−Ψ2
β)|∇un|2δε dx

)
= lim

n→∞

∫
Ψ2

β |∇un|2δε dx +
∫

(1−Ψ2
β) dµ

+
∫

(1−Ψ2
β)|∇u|2δε dx.

When β → 0, we obtain by Lebesgue’s theorem

lim
n→∞

∫
|∇un|2δε dx = µB,∞ + ‖µ‖+ |δε/2∇u|

2

2.

The proof of (9) is similar. �

Theorem 6. Let N ≥ 3, Ω ⊆ RN satisfying assumption (H) and (un) ⊂
D1,2

ε (Ω) be a minimizing sequence for Sε(Ω) satisfying (4). If Sε(Ω) < cε

then (un) contains a convergent subsequence. In particular, there exists a mini-
mizer for Sε(Ω).

Proof. Since (un) is bounded in D1,2
ε (Ω) we may assume, going if necessary

to a subsequence,

un ⇀ u in D1,2
ε (Ω),

|∇(un − u)|2δε ⇀ µ in M(Ω),

un → u a.e. on Ω.

By the preceding lemma

Sε(Ω) = |δε/2∇u|22 + µB,∞ + ‖µ‖,(11)

1 = |δ(ε−2)/2u|22 + νB,∞.(12)

We deduce from (7), (11) and the definition of Sε(Ω)

Sε(Ω) ≥ Sε(Ω)|δ(ε−2)/2u|22 + cενB,∞.

It follows by (12) that νB,∞ = 0 because Sε(Ω) < cε. Hence we have proved
that |δ(ε−2)/2u|22 = 1 and so

|δε/2∇u|22 = Sε(Ω) = lim |δε/2∇un|22. �
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