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THE BORSUK-ULAM PROPERTY FOR CYCLIC GROUPS

MAREK IZYDOREK — WACLAW MARZANTOWICZ

ABSTRACT. An orthogonal representation V' of a group G is said to have the
Borsuk—Ulam property if the existence of an equivariant map f : S(W) —
S(V) from a sphere of representation W into a sphere of representation
V implies that dim W < dim V. It is known that a sufficient condition
for V' to have the Borsuk—Ulam property is the nontriviality of its Euler
class e(V) € H*(BG;R). Our purpose is to show that e(V) # 0 is also
necessary if G is a cyclic group of odd and double odd order. For a finite
group G with periodic cohomology an estimate for G-category of a G-space
X 1is also derived.

1. The Euler class of cohomology sphere

Let V' be an n-dimensional orthogonal representation of a compact Lie group
G. Assume that V' is R-orientable, i.e. the vector bundle V C EG xg V — BG
is orientable over a ring R, or equivalently, the action of G on H*~}(S(V); R) =
H"Y(S(V);Z) @ R is trivial, where S(V) stands for a unit sphere in V (see
14], [15)).

By the Euler class of V over R, denoted e(V'), we call the Euler class of
the vector bundle EG x¢ V — BG in H*(BG;R). It is then an element

of H"(BG;R).

DEFINITION 1.1. We say that V' has the Borsuk—Ulam property if whenever
there is a G-equivariant map f : S(W) — S(V), W an orthogonal representation
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of G, then dim W < dim V. Otherwise, we say that V' does not have the Borsuk—
Ulam property.

It is shown in [13] that if V is R-orientable and e(V) # 0 then V has the
Borsuk—Ulam property. We will study the converse problem, that of whether the
condition e(V') = 0 implies that V' does not have the Borsuk—Ulam property.

Suppose that G is a nontrivial, compact, connected Lie group and put R = Q.
Then

e(V)#0& V! ={0},
where T' C G is the maximal torus of G. Moreover, (V) is equal to the multiple
of all weights of V' (see [10], or [13] for more details). In general, even in the
case when G is finite it is difficult to derive e(V'). However, there exists a simple
formula for (V') if G has periodic cohomology, in particular, if G is a finite cyclic
group C}, of order k.

Assume that G = C}, and choose R = Zj, the ring of integers modulo k. It is
well known (cf. [5], [17]), that H*(Cy;Zy) = Z, 0 < i < 0o, and a periodicity is
given by multiplication by the element u = e(V?') € H%(C}, Zy,), where V! is the
standard linear complex representation of Cj given by the embedding Cj, C S*!
(the generator g € C is identified with exp(2my/—1k~1) € St). Denote by V*,
1 <i < k/2, the i-th tensor power of V! (over C) and by V° the 1-dimensional
(real) trivial representation of G. If k = 2m, then for i = m = k/2, we denote
by Vg" a 1l-dimensional real representation of Cj given by the epimorphism
Cr — Cy ~{-1,1} = O(1).

We shall use the following

FAcT 1.2. Every real orthogonal representation of Cy is of the form:

V=uv,

V=@PuvieL.v,

0<i<(k—1)/2, ifk is odd,
0<i<m-—1, if k= 2m.

Moreover, for k = 2m, k # 2, V is orientable if and only if V = @;", I;V?, where
Vm .= 2Vg". Bvery representation V = LVoa llVR1 of Cy is Zo-orientable.

Since e(V o W) =e(V)-e(W) and e(V)) =i-e(V!) =i-u € H*(Ck;Zy)
(cf. [13] and [16]), we get (V) = [[i% - u", for V.= @L;V?, 0 < i < [k/2] and
r =Y l;. The last means that e(V') # 0 if and only if the integer

h(V)=][i" o<i<[k/2],

(with the convention 0° = 1, 0" = 0 for 7 > 0) is not divisible by k. In particular
e(V) =0if lyp # 0. Our main theorems state that for cyclic groups of odd and
double odd order e(V) is the only obstruction for V' to have the Borsuk—Ulam

property.
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THEOREM 1.3. Let V' be Zji-orientable, orthogonal representation of the
group G = Cy, with k being an odd number. Then V has the Borsuk—Ulam
property if and only if e(V) # 0.

PROOF. It is sufficient to show that if (V) = 0 then there exist an or-
thogonal representation W satisfying dim W > dim V', and a G-equivariant map
f:SW)— SV).

We assume that V& = {0}, otherwise S(W) can be mapped into a point.
Let V be of dimension n. Consider the vector bundle £ = FG x¢ V over BG.
We claim that if e(V) = 0 then the sphere bundle S(§) = EG xg S(V) of &
restricted to the (n 4 1)-skeleton BG("*+Y) of BG has a nonzero section. Indeed,
m(S(V)) = 01if i <n — 1, and therefore S(§) pg»-1 admits a section since all
obstructions are in zero groups H*™(BG;m;(S(V))), i < n — 2. Furthermore,
by its geometric interpretation e(V') is the only obstruction to extending such a
section over the n-skeleton of BG. This yields that there is a section on BG(™,
since e(V) = 0.

Moreover, since V is Zg-orientable and k # 2 the dimension of V is even.
This implies H"*1(BG;,(S(V))) = 0, because either n = 2 and m2(S?) = 0
or n > 4 and H""Y(BG;7,(S(V))) = H""(BG;Zs) = 0. Thus the section
can be extended over BG("tY . Since G acts freely on EG the sections of the
fibration EG("t1) x4 S(V) are in one-to-one correspondence with G-mappings
from EG™*! to S(V) (cf. [4]). Hence, there is a G-map f : EG"+1) — S(V).
Put W = (n/2 + 1)V! so that, W is a representation of C}, of (real) dimension
n+2. Let ¢ : S(W) — EG be a G-map into the universal space. Note that EG
and S(V) are G-CW complexes, thus ¢ can be replaced, up to a G-homotopy,
by a G-cellular map ¢ : S(W) — EG"+1) and the composition f¢ gives the
required map. The proof is complete. O

THEOREM 1.4. Let G = Cy be a cyclic group of order k =2-odd. Let V be
an orthogonal, Zy-orientable representation of G. Then V has the Borsuk—Ulam
property if and only if e(V) # 0.

We begin with the following

PRrROPOSITION 1.5. Let V be a Zy-orientable, orthogonal representation of
a cyclic group Cy (k # 2) such that h(V) = 0 (mod 2k). Then V does not have
the Borsuk—Ulam property.

More precisely, for any cyclic group G = Cy and V = @ m;V? there exists
a G-equivariant map f: S((r +1)V1) — S(V), for r = m; provided [[i™ is
divisible by 2k.

PROOF. Denote by W1 the standard linear (complex) representation of Cay

and by W' its i-th tensor power (over C). Let W be an orthogonal represen-
tation of Cy defined as a direct sum @ m;W? where m; are taken from the
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splitting of V. Obviously, h(W) = h(V) and e(W) = 0, since 2k divides h(W).
Consequently, there exists a Cog-equivariant map

f: S(rWh) * Oy, — S(W), r= Zmi,

where A * B denotes the join of A and B (cf. [16]). For a fixed generator g
of Cy, we denote by f; the restriction of fto the space S(rWt) x {g*, ¢°*1}
which is homeomorphic to a 2r-dimensional sphere. Since W is Zjg-orientable,
fN’S represents the same element in the homotopy group 7o, (S%7~1) = Z, for every
s=0,...,2k —1. Now, the map

given by the restriction of f can be considered as a Cg-equivariant map
h:SrVY«Cp — S(V)

with an action of C}, induced by the standard inclusion Cy, C Csyy. Let v be a fixed
generator of Cy, and f, be the restriction of f to the space S(rV?1) * {y*, y**1}.
Note, that the map f, represents the sum of homotopy classes of maps fgs and
ﬁ5+1 in the group mo,(S?"~1). Since m2,(S*"~1) = Zy and fgs is homotopic
to ]?Qsﬂ, £ is homotopically trivial. This gives us an extension of the map f to
a Cg-equivariant map

f8((r+1Vh — S(V),
and the proof is complete. O

COROLLARY 1.6. Let V' be a Zy-orientable, orthogonal representation of C,
k # 2. If the Euler class e(V)) = 0 then:

(a) the representation V @V does not have the Borsuk—Ulam property,
(b) the representation V @& V2! does not have the Borsuk—Ulam property
fort=20,1,2,....

COROLLARY 1.7. IfV = @ m;V' is any Z-orientable representation of C
(k # 2) with the Euler class e(V) equal to zero then the representation V' =
my, V2o @i;éio m; V%, with m;, # 0, does not have the Borsuk—Ulam property.

Theorem 1.4 is a direct consequence of the following

PROPOSITION 1.8. Let V.= @ m;V* be a representation of a cyclic group
Cy, with k = 2% . 0dd. Assume there is io divisible by 2¢ with m;, # 0. Then
e(V) =0 implies V does not have the Borsuk—Ulam property.

PrOOF. If h(V) is divisible by 2¢*1 then the above result follows directly
from Proposition 1.5. Assume then, that h(V) is divisible by 2¢ and is not
divisible by 2¢+1. Tt follows that m;, = 1. Obviously, V% is isomorphic to Vio+#
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and that is why the summand V7 can be replaced by V¥ in the direct sum

Since k = 2%-0dd and iy is also of the form 2?-odd, i+ k is divisible by 2¢+1.
Now again by Proposition 1.5 we have the desired result. O

REMARK 1.9. It has been proved in [3] that for G = C), x Cy = Cpq, where p,
q distinct primes, and any orthogonal representation V' of G' with dim V¢ > 1
and dim V% > 1 there exists a G-map f : S(V) — S(VC @ V). Of course,
that result allows to construct a pair of representations U, W of G = Cy, k =
pg, with U = WY = {0} and dimU > dim W such that there is a G-map
f: S(U) — S(W). Nevertheless, our result gives a necessary and sufficient

condition.

PrOBLEM 1.10. For which group G and representation V the condition
e(V) = 0 implies that V' does not have the Borsuk—Ulam property?

2. An estimate of equivariant category

Closely related to the problem of equivariant mapping into spheres is the
computation of equivariant category, catg(X), of a G-space X (cf. [6]-[8], [12]).
This is by definition the smallest natural number m (or oco) such that there
exists a covering of X consisting of m G-invariant open subsets U, ... ,U,, each
of which can be equivariantly deformed to an orbit Gz; inside X.

Let X be a G-space. We say that an orbit type (G/H) = (G/G), x € X, is
minimal in X if there is no y € X such that H C G, and H # G. By o = a(X)
we denote the number of connected components of |JXH) /G = |JXm)/G,
where (H) runs over all minimal orbit types of X (cf. [12, Definition 1.2]).

PROPOSITION 2.1. Let G be a finite group, {e} # H C G its subgroup.
Suppose that X is a connected G-space and o = «(X) is taken with respect to
the action of H on X. Then

1
catg(X) > —caty(X).
a
PROOF. Let {U;}7', m = catg(X), be a G-covering of X with catg(U;, X)
= 1. We shall have established the proposition if we prove that
caty(U;, X) = caty (G/G,,, X) < a.

If X is a G-ANR then this follows from Theorem 1.10 of [12].
In the general case, since G is a finite group

Gl‘i = U H-T'i,j >~ U H/HiJ'
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as an H-space. Let us choose a point z73, 1 < 8 < «, in every connected com-
ponent of X(g)/G. By Lemma 1.11 of [12], the inclusion ¢ ; : H/H;; C X
is H-homotopic to a H-equivariant map ¢;; : H/H;; — H/H,.,, for some
1 < B(i,7) < «, which proves the required inequality and consequently Proposi-
tion 2.1 O

LEMMA 2.2. Let p be a prime number. Suppose that X is a (n — 1)-dimen-
sional cohomology sphere over Z, n > 2. Assume that a p-group G acts on X
without fized points. Then for every minimal orbit type (H) the set XH) /G is
connected.

PROOF. Since (H) is minimal X*)/G = X)/G = Xy /N(H) (cf. [4]).
It is sufficient to prove that Xy is connected. From P. Smith theorem (cf. [4])
it follows that
xH ~z, Sl py <n.
Let {e} C Hy C...C HCH C...C G be aresolving tower of G with factors
isomorphic to Cp. Since H is minimal, X¢ = () and H # H, we obtain

0= Xﬁ: (XH)N(ﬁ,H) _ (XH)CP.

This leads to a contradiction if Xz = X ~7, S% and p is odd. If p = 2, then
N(H,H) = Zy has to permute two connected components of X = Xy ~y, SO.
Indeed, any such component X ~7 x, and (X )02 ~z, * by the Smith theory,
which shows that X is nonempty if N (H, H) preserves a component X of X#.
This proves that X ) /G is connected. O

The following proposition is an immediate consequence of Proposition 2.1
and Lemma 2.2.

ProPOSITION 2.3. Let G, be a p-subgroup of a finite group G and X be
a G-space which is an (n — 1)-cohomology sphere over Z,. Let oy, be a number
of distinct minimal orbit types of the action of G, on X. Suppose that X%» = ().
Then

catg(X) > icatgp (X).
Qp

In particular, catg(X) > caty (X) if H is a cyclic p-group.

Combining the above with the main result of [2] we get the following gener-
alization of Bartsch’s result.

THEOREM 2.4. Let G be a finite group with periodic cohomology such that its
2-Sylow group is cyclic. Suppose that X = S(V) is the sphere of a Z-orientable
orthogonal representation of G of dimension n. Assume that X = 0 for some
p-subgroup H C G. Then

catg(X) >n/p"™'  where |H| = p".
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In particular, if e(V) #0 in H*(G;Z) 2 Z/|G|Z, then
catg(X) > n/p !
for every divisor p of |G|, p" = |Gp|, such that e(V') # 0(mod p").

ProOF. By Theorem IV.9.7 of [5], G has periodic cohomology if and only
if every its Sylow p-subgroup is cyclic (if p is odd), or cyclic and generalized
quaternionic if p = 2. For H = C?" the condition V¥ = {0} implies caty (X) >
n/p" !, by the main result of [2]. By Lemma 2.3 ay = 1, and consequently
catg(X) > n/p ! as follows from Proposition 2.3 . This shows the first part of
statement.

If e(V) # 0 (mod p") then e(V), = res$(e(V)), with H = G,, is also differ-
ent from 0 (cf. [5], [9], [17]), and consequently VH = {0}, which reduces it to
the first part of Theorem. O

PROBLEM 2.5. Does e(V) # 0 (in H*(G;Z)) imply that catg(S(V)) >
dim V for an orthogonal representation V' of G7
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