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Abstract. We provide conditions which ensure that the solution set of the
Cauchy problem for a singularly perturbed system of differential inclusions

in infinite dimensional Banach spaces is upper semicontinuous with respect
to the parameter ε ≥ 0 of the perturbation. The main tools are represented

by suitable introduced measures of noncompactness and the topological

degree theory in locally convex spaces.

Introduction

The aim of this paper is to provide conditions under which we have the upper
semicontinuity at ε = 0, in a convenient topology, which will be precised later,
of the solution map ε → Σε of the following Cauchy problem for a singularly
perturbed system of differential inclusions in infinite dimensional spaces:{

x′(t) ∈ Ax(t) + f1(t, x(t), y(t)),

εy′(t) ∈ B y(t) + f2(t, x(t), y(t)), t ∈ [0, d],
(1)

x(0) = x0, y(0) = y0(2)
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where A and B are infinitesimal generators of C0-semigroups of linear operators
eAt and eBt, t ≥ 0, x ∈ E1 and y ∈ E2 with E1, E2 infinite dimensional Banach
spaces. The nonlinear multivalued operators fi, i = 1, 2, have nonempty, convex
and compact values and satisfy suitable conditions expressed in terms of the
Hausdorff measure of noncompactness. All the assumptions will be precised in
the next section.

In finite dimensional spaces for singularly perturbed differential inclusions
several attempts to obtain a version of the classical Tikhonov’s theorem have
been made. For this the main difficult is the choice of the topology for the
convergence as ε → 0 of the solutions (xε, yε), ε > 0, to a solution (x0, y0) at
ε = 0. In [13], [20] in the case when one considers the uniform convergence
with respect to the x-variable and the weak topology of L2 with respect to
the y-variable then the solution map of the Cauchy problem associated to the
system ε → S(ε) turns out to be upper semicontinuous at ε = 0. When the
uniform topology is also considered for the y-variable then we have to restrict
the attention to a suitable subset Ŝ(ε) of S(ε) in order to obtain the upper
semicontinuity at ε = 0 (see [11], [23] and [24]). In fact, in general, even in the
linear case the map ε → S(ε) is not upper semicontinuous at ε = 0 as shown
in [12].

In [14] and [15], (see also the references therein), an approach in order to
approximate the slow motions of a singularly perturbed control system in finite
dimension by a limit differential inclusion was proposed. This approach is based
on the averaging method applied to the fast dynamics, as result the uniform
convergence of the slow motions to a solution of the limit differential inclusion
is obtained. Furthermore, any such solution is the uniform limit of slow mo-
tions. Finally, singular perturbation methods for partial differential equations
are intensively studied (see e.g. [21] and [22]).

This paper can be considered in itself an attempt of developing a singu-
lar perturbation theory for differential inclusions in infinite dimensional spaces
by means of topological methods. For our purposes it turns out convenient to
consider the uniform topology for the x-variable and the weak topology for the
y-variable. In fact, with this choice of the topology we will be able to show
the upper semicontinuity at ε = 0 of a suitably defined condensing operator Fε,
whose fixed points represent the set Σε of the solutions of our problem (Theo-
rem 1). Furthermore, we will show that ind(Σ0, F0) = 1 (Lemma 1). Therefore,
from these results we obtain that the solution map ε→ Σε has nonempty values
and it is upper semicontinuous at ε = 0 (Theorem 2). Here the topological index
is that for condensing operators in locally convex spaces.

Observe that, for singularly perturbed differential inclusions in finite dimen-
sional spaces, a variant of the necessary Tikhonov’s stability conditions is given
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in an explicit form, for instance, in [11] and [24]. In this paper these conditions
are represented by the assumptions (S0), (A0) and (A3).

We have an other reason for considering singularly perturbed systems of dif-
ferential inclusions in infinite dimensional Banach spaces. Indeed, in [4], combin-
ing the classical singular perturbation theory in finite dimensional spaces with
the control technique based on the sliding manifolds, several tracking control
problems were solved. In fact, in [4] the control function is designed by means of
a differential equation depending on a small parameter ε > 0, on the dynamics
to be controlled and on the assigned sliding manifold, which is given as zeros
of a differentiable function. Applications of this control technique to concrete
problems, treated as tracking problems, can be found in [5], [6] and [17]. To this
regard the results presented in this paper can be also considered as a first contri-
bution to the development of the control technique proposed in [4] to the infinite
dimensional case when the dynamics is modelled by a differential inclusion as in
the case of uncertain systems.

We would like to point out that systems of differential inclusions involving
noncompact operators have been also considered in [7] and [18] to solve nonlinear
boundary value control problems.

The paper is organized as follows. In Section 1 we state the problem and we
formulate the assumptions which permit to solve it. Then we introduce conve-
nient operators in order to rewrite our problem in terms of a multivalued fixed
point problem. In Section 2 we prove in Theorem 1 the relevant properties of the
resulting fixed point operator Fε, in particular the condensivity with respect to
a suitably introduced measure of noncompactness and the upper semicontinuity
in the considered topology. In Lemma 1 we will show that the topological index
of the reduced problem at ε = 0 is one. Then, by using the previous results, in
Theorem 2 we state the desired properties for the solution map ε→ Σε. Finally,
in Section 3, we provide an example illustrating how the conditions of Section 2
can be verified.

1. Statement of the problem, definitions and assumptions

Through this paper we consider the Cauchy problem for a system of differ-
ential inclusions of the following form{

x′(t) ∈ Ax(t) + f1(t, x(t), y(t)),

εy′(t) ∈ B y(t) + f2(t, x(t), y(t)), t ∈ [0, d],
(1)

x(0) = x0, y(0) = y0,(2)

where A and B are infinitesimal generators of C0-semigroups of linear operators
eAt and eBt, t ≥ 0, respectively, acting in the separable Banach spaces E1 and
E2 with E2 satisfying the Radon–Nikodym condition (see [10]), ε > 0 is a small
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parameter and fi : R+×E1×E2 → Kv(Ei), i = 1, 2, are multivalued operators.
Here Kv(E) denotes the set of all the nonempty, convex, compact subsets of the
Banach space E.

Statement of the problem. We want to provide conditions under which
the solution set Σε, ε ≥ 0 of system (1)–(2) is upper semicontinuous at ε = 0 in
a suitable functional space F , equipped with the uniform topology with respect
to the x-variable and with the weak topology with respect to the y-variable. For
this, first we show that Σε can be represented as a fixed points set of a condensing
operator Fε, ε ≥ 0 defined in F . Moreover, we will show that, under these
conditions, the related topological index ind(Σ0, F0) is different from zero, (see
e.g. [3]).

To make precise the setting in which we will solve the above problem we first
choose for the functions t → x(t) and t → y(t), t ∈ [0, d] the functional spaces
C(E1) and L1(E2) respectively, and so F = C(E1) × L1(E2). We recall that
C(E) denotes the space of continuous functions x : [0, d] → E equipped with the
uniform norm: maxt∈[0,d] ‖x(t)‖E and L1(E) is the space of strongly measurable
functions x : [0, d] → E having finite norm ‖x‖L1 :=

∫ d

0
‖x(t)‖E dt. In the sequel

by wE we will denote the space E equipped with the weak topology of E, while
Kv −w(E) will be the set of all the nonempty, convex, weakly compact subsets
of E. Furthermore, by Cτ (E1) and L1

τ (E2) will denote the Banach spaces of the
functions as defined before restricted to the interval [0, τ ] ⊂ [0, d].

We assume that

(S0) there exists a positive constants γ > 0 such that ‖eBt‖E2
≤ e−γt for

any t ≥ 0. Moreover, D(B∗), the domain of the adjoint operator B∗, is
dense in E∗2 (see [19]).

(A0) The Nemytskĭı operators Φi : C(E1)× L1(E2) → Kv-w(L1(Ei)) gener-
ated by fi : R+ × E1 × E2 → Kv(Ei), i = 1, 2, as follows

Φi(x, y) = {g ∈ L1(Ei) : g(t) ∈ fi(t, x(t), y(t)) for almost all t ∈ [0, d]}

are well defined. Furthermore, for any τ ∈ (0, d], we put

Φτ
i (x, y) = {g ∈ L1

τ (Ei) : g(t) ∈ fi(t, x(t), y(t)) for almost all t ∈ [0, τ ]}.

The following assumptions are formulated in terms of the Nemytskĭı operators
Φi, i = 1, 2.

(A1) For any pair of bounded sets Ω1 ⊂ C(E1), Ω2 ⊆ Q ⊂ L1(E2), where Q
is the convex, bounded closed set of the asumption (A3) in the sequel,
there exists a function ϕ ∈ L1(R) such that ‖gi(t)‖Ei

≤ ϕ(t) for almost
all t ∈ R and any gi ∈ Φi(x, y), i = 1, 2, whenever (x, y) ∈ Ω1 × Ω2.

(A2) Φi are upper semicontinuous multivalued operators from C(E1) ×
wL1(E2) to wL1(Ei).
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Remark 1. Explicit conditions on fi, i = 1, 2, which ensure that the related
Nemytskĭı operators are well defined will be given in Section 3. For the finite
dimensional case (see [2]).

We also need suitable compactness conditions on Φi, i = 1, 2, expressed in
terms of the Hausdorff measure of noncompactness. To this aim we give the
following definitions.

Definition 1. Let E be a Banach space. Let Ω ⊂ E be a bounded set. The
Hausdorff measure of noncompactness χE(Ω) of the set Ω is the infimum of the
numbers α > 0 such that Ω has a finite α-net in E. For the relevant properties
of χE we refer to [1].

Definition 2. Let E be a Banach space. Let Ω ⊂ E be a bounded set of E.
The measure of weak noncompactness χw(Ω) of the set Ω is the infimum of the
number α > 0 such that Ω has a weakly compact α-net in E. This measure of
weak compactness and its properties have been studied by De Blasi in [9].

Definition 3. Let Ω be a bounded set of L1(E). A function b ∈ L1(R) is
called a bound for the weak measure of noncompactness χw of the set Ω ⊂ L1(E)
if for every δ > 0 there exist a measurable set eδ ⊂ [0, d] and a compact set
Kδ ⊂ E such that meas eδ < δ and for every f ∈ Ω there exists g ∈ L1(E)
satisfying g(t) ∈ Kδ for almost all t ∈ [0, d] and

‖f(t)− g(t)‖E ≤ b(t) + δ for almost all t ∈ [0, d] \ eδ.

In the sequel the set of all the functions b ∈ L1(R) with the previous proper-
ties will be denoted byWB(Ω). Observe that we can always assume that g(t) = 0
for t ∈ eδ. Furthermore, for any τ ∈ (0, d], we put χw(Ω)(τ) = χw(Ω|[0,τ ]).

We introduce now the operators Fε, ε ∈ [0, 1], in order to represent the
solutions of (1)–(2) in a convenient way. For this, we need first to define the
linear operators Λε : L1(E1)× L1(E2) → C(E1)× L1(E2) as follows

Λε

(
g1
g2

)
(t) =

(
Λ1g1

Λ2(ε)g2

)
(t) =


t∫
0

eA(t−s)g1(s) ds

(1/ε)
t∫
0

e(1/ε)B(t−s)g2(s) ds

 , ε > 0,

Fε(x, y)(t) = Λε

(
Φ1(x, y)
Φ2(x, y)

)
(t) +

(
eAtx0

e(1/ε)Bty0

)
.

While, for ε = 0 we set Λ2(0) = −B−1 and 0 instead of e(1/ε)Bty0.

We formulate now the assumptions under which Fε, ε ∈ [0, 1], is a well defined
condensing operator.

(A3) There exists a convex, bounded and closed set Q ⊂ L1(E2) such that

Λ2(ε)Φτ
2 : C([0, τ ], E1)×Q|[0,τ ]−◦Q|[0,τ ], τ ∈ [0, d].
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(A4) There exist positive constants k11 and k12 such that for any pair of
bounded sets Ω1 ⊂ C(E1) and Ω2 ⊂ Q we have that

k11χE1(Ω1( · )) + k12χw(Ω2)( · ) ∈WB(Φ1(Ω1 × Ω2)).

(A5) There exist positive constants k21 and k22 such that for any pair of
bounded sets Ω1 ⊂ C(E1) and Ω2 ⊂ Q one has

χw(Φ2(Ω1 × Ω2))(τ) ≤ k21 sup
t∈[0,τ ]

χE1(Ω1(t)) + k22χw(Ω2)(τ), τ ∈ [0, d].

Finally, we now formulate the last assumption

(A6) k22/γ < 1.

Remark 2. The assumption (A3) is verified if, for instance, there exist pos-
itive constants M and l such that

‖f2(t, x, y)‖E2
≤M + l‖y‖,

with l/γ < 1. In this case, we have Q = QR, where

QR := {g ∈ L1(E2) : ‖g(t)‖E2
≤ R, for almost all t ∈ R}.

and R > 0 is sufficiently large.

2. Results

We introduce now suitable measures of noncompactness with respect to which
we will show that Fε, ε ∈ [0, 1], is condensing. For this, given a bounded set
Ω ⊂ C(E1)× L1(E2) we put

µ(Ω)(τ) =
(
χE1(P1(Ω)(τ))
χw(P2(Ω))(τ)

)
,

where P1 is the projector on the first coordinate of the Cartesian product C(E1)×
L1(E2), while P2 is the projector on the second coordinate of the same space.
Note that χw(P2(Ω))(τ) is a nondecreasing function with respect to τ and so
measurable. Furthermore, we also define a measure of noncompactness as follows

ν(Ω) = (µ(Ω),modc(P1Ω)),

where modc(P1Ω) denotes the modulus of equicontinuity of the functions in P1Ω.
The measure of noncompactness ν takes values in the cone K defined as follows

K = {(a, b, c) ∈ L1(R)× L1(R)× R : a(t) ≥ 0, b(t) ≥ 0

for almost all t ∈ [0, d], and c ≥ 0}.

We can now prove the following.
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Theorem 1. Assume that the conditions (S0), (A0)−(A6) are satisfied, then
the operator Fε : C(E1) × Q ( C(E1) × Q is upper semicontinuous at any
ε ∈ [0, 1] and Fε(x, y) is ν-condensing with respect to the variables x, y, ε.

Proof. We prove first that from gn → g0 weakly in L1(E2) and εn → 0
it follows that Λ2(εn)gn → Λ2(0)g0 weakly in L1(E2). For this, let v∗ be the
functional generated by the function

(3) y∗(t) =
m−1∑
i=0

y∗i ψ[ti,ti+1)(t),

where y∗i ∈ E∗2 , 0 = t0 < . . . < tm = d, and ψ[ti,ti+1) is characteristic function of
the interval [ti, ti+1) then

d∫
0

〈
y∗(t),

1
εn

t∫
0

e(1/εn)B(t−s)gn(s) ds
〉
dt

=
m−1∑
i=0

ti+1∫
ti

〈
y∗i ,

1
εn

t∫
0

e(1/εn)B(t−s)gn(s) ds
〉
dt

=
m−1∑
i=0

ti+1∫
ti

〈
y∗i ,

1
εn

ti∫
0

e(1/εn)B(t−s)gn(s) ds
〉
dt

+
m−1∑
i=0

ti+1∫
ti

〈
y∗i ,

1
εn

t∫
ti

e(1/εn)B(t−s)gn(s) ds
〉
dt

=
m−1∑
i=0

ti∫
0

〈
1
εn

ti+1∫
ti

e(1/εn)B∗(t−s)y∗i dt, gn(s)
〉
ds

+
m−1∑
i=0

ti+1∫
ti

〈
1
εn

ti+1∫
s

e(1/εn)B∗(t−s)y∗i dt, gn(s)
〉
ds

=
m−1∑
i=0

ti∫
0

〈(B∗)−1(e(1/εn)B∗(ti+1−s) − e(1/εn)B∗(ti−s))y∗i , gn(s)〉 ds

+
m−1∑
i=0

ti+1∫
ti

〈(B∗)−1(e(1/εn)B∗(ti+1−s) − I)y∗i , gn(s)〉 ds

=
m−1∑
i=0

ti+1∫
0

〈(B∗)−1e(1/εn)B∗(ti+1−s)y∗i ), gn(s)〉 ds
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−
m−1∑
i=0

ti∫
0

〈(B∗)−1e(1/εn)B∗(ti−s)y∗i , gn(s)〉 ds

+

d∫
0

〈(−B∗)−1y∗(s), gn(s)〉 ds.

We now prove that the first two terms tend to zero as n→∞. For this, note that
since gn → g0 weakly in L1(E2), we have that for any δ > 0 there exists µ > 0
such that for any set e ⊂ [0, d] with meas (e) < µ it follows

∫
e
‖gn(s)‖E2 ds < δ

for any n ∈ N, (see [10]). Let t ∈ [0, d], first write
∫ t

0
=

∫ t−µ

0
+

∫ t

t−µ
. Then

we can estimate by means of (S0) these integrals and taking into account the
observation above we can conclude that

t∫
0

〈(B∗)−1e(1/εn)B∗(t−s)y∗i , gn(s)〉 ds→ 0

as n→∞. We leave the details to the reader. Finally, the last term tends to

−
d∫

0

〈y∗(s), B−1g0(s)〉 ds.

In conclusion, we have weak convergence of (1/εn)
∫ t

0
e(1/εn)B(t−s)gn(s) ds

to −B−1g0 with respect to the functionals v∗. On the other hand, E2 has the
Radon–Nikodym property, then by [10, Theorem 1] we have that (L1(E2))∗ =
L∞(E∗2 ). Now we can approximate in the “almost every” convergence any func-
tion y ∈ L∞(E∗2 ) by a function of the form (3). For this it is possible to consider
the continuous function

zh(s) =
1
h

s+h∫
s

y(t) dt, s ∈ [0, d]

which tends to y(s) as h → 0 for almost all s ∈ [0, d] (see [10, Theorem 9]) and
then approximate zh( · ) by step functions. Applying now Egorov’s theorem we
finally obtain that, for any y ∈ L∞(E∗2 ),

d∫
0

〈
y(t),

1
εn

t∫
0

e(1/εn)B(t−s)gn(s) ds
〉
dt

tends to

−
d∫

0

〈y(s), B−1g0(s)〉 ds

as n→∞. Therefore, the operator Λ2(ε)Φ2(x, y) is upper semicontinuous from
[0, 1]× C(E1)×Q to Kv-w(Q).
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Observe that ‖Λ2(ε)‖L1(E2)→L1(E2)
≤ 1/γ. In fact, let ε > 0, and consider

d∫
0

1
ε

∥∥∥∥
t∫

0

eB(t−s)g(s) ds
∥∥∥∥

E2

dt ≤
d∫

0

1
ε

t∫
0

e−(1/ε)γ(t−s)‖g(s)‖E2
ds dt

=

d∫
0

1
ε

d∫
s

e−(1/ε)γ(t−s)‖g(s)‖E2
ds dt+

1
γ

d∫
0

(1− e−(1/ε)γ(d−s))‖g(s)‖E2
ds

=
1
γ

d∫
0

‖g(s)‖E2
ds.

Finally, for ε = 0, since B−1 =
∫∞
0
eBt dt, we have ‖B−1‖ ≤ 1/γ.

We prove now that F is ν-condensing. Let Ω ⊂ C(E1)×Q, one has

ν(Ω) ≤ ν

( ⋃
ε∈[0,1]

Fε(Ω)
)
.

Then

(4) µ(Ω)(t) ≤ µ

( ⋃
ε∈[0,1]

Fε(Ω)
)

(t) for almost all t ∈ [0, d]

and

(5) modc(P1Ω) ≤ modc

(
P1

⋃
ε∈[0,1]

Fε(Ω)
)
.

Therefore

(6) µ(Ω)(t) ≤ µ

( ⋃
ε∈[0,1]

Fε(P1Ω× P2Ω)
)

(t) for almost all t ∈ [0, d].

From (A4), see [8], we obtain for all t ∈ [0, d]

(7) v(t) ≤
t∫

0

C(k11v(s) + k12χw(P2Ω)(s)) ds,

where C = supt∈[0,d] ‖eAt‖, v(t) = χE1(P1Ω(t)). Since, if C ⊂ L1(E2) is any
weakly compact set then

⋃
ε∈[0,1] Λ2(ε)C is weakly compact, from (A5), for al-

most all t ∈ [0, d], we have

(8) χw(P2Ω)(t) ≤ k21

γ
sup

s∈[0,t]

v(s) +
k22

γ
χw(P2Ω)(t).

From (8), using (A6), we obtain

(9) χw(P2Ω)(s) ≤
(

1− k22

γ

)
k21

γ
sup

ξ∈[0,s]

v(ξ), s ∈ [0, τ ].
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Consider τ ≤ h, where h is chosen in such a way that

C hmax
{
k11, k12

(
1− k22

γ

)
k21

γ

}
< 1

then from (7) we have v(t) = 0 for t ∈ [0, h] and from (9) χw(P2Ω)(s) = 0 for
almost all s ∈ [0, h]. Therefore, the inequality (7) has the form

(10) v(t) ≤
t∫

h

C(k11v(s) + k12χw(P2Ω)(s)) ds

and the inequality (9) takes the form

(11) χw(P2Ω)(s) ≤
(

1− k22

γ

)
k21

γ
sup

ξ∈[h,s]

v(ξ), s ∈ [0, τ ].

Let now t ∈ [h, 2h], then from (10) and (11) we have v(s) = 0, χw(P2Ω)(s) = 0
for almost all s ∈ [h, 2h]. Continuing with this process we obtain

v(s) = 0, s ∈ [0, d],(12)

χw(P2Ω) = 0.(13)

Therefore, from (A4),

0 ∈WB(Φ1(P1Ω× P2Ω))

and consequently
⋃

ε∈[0,1] P1Fε(P1Ω× P2Ω) is relatively compact, see [8]. Thus

modc

(
P1

⋃
ε∈[0,1]

Fε(P1Ω× P2Ω)
)

= 0

and from (5) we have that

(14) modc(P1Ω) = 0

In conclusion from (12), (13) and (14) we have the relative compactness of Ω. �

Consider now the reduced problem{
x′(t) ∈ Ax(t) + f1(t, x(t), y(t)),

y(t) ∈ B−1f2(t, x(t), y(t)), t ∈ [0, d],
(15)

x(0) = x0.(16)

Let Στ
0 the solution set of (15) and (16) defined in the interval [0, τ ]. Observe

that if Στ
0 is bounded then, by Theorem 1, we obtain that Στ

0 is a compact subset
of Cτ (E1)× wQ|[0,τ ]. We have the following.
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Lemma 1. Assume that the conditions (S0), (A0)−(A6) are satisfied. Fur-
thermore, assume that Σ0 is nonempty, bounded and Στ

0 = Σ0|[0,τ ] for all τ ∈
[0, d]. Then the topological index ind(Σ0, F0) = 1.

Proof. Let Γ = {(t, x) : (t, x) ∈ (t, P1Σ0(t)}. Since P1Σ0 is compact in
C(E1) then Γ is compact in R × E1. Consider now the continuous Uryson
function

H(t, x) =

{
1 if (t, x) ∈ B(Γ, r),

0 if (t, x) 6∈ B(Γ, 2r),
where B(Γ, r) is a r-ball neighbourhood of Γ. Let us consider the operator

f̃1(t, x, y) = H(t, x)f1(t, x, y).

Then the superposition operator

Φ̃1(x, y)(t) = f̃1(t, x(t), y(t))

is well defined and upper semicontinuous, since Φ1 is upper semicontinuous and
H(x)(t) = H(t, x(t)) is continuous.

We now prove that the operator Φ̃1 satisfies assumption (A4). In fact, since
Φ1 satisfies (A4), given δ > 0 we can find a set eδ/2 such that meas(eδ/2) < δ/2
and

χE1(Φ1(Ω1 × Ω2)(t)) ≤ k11χE1(Ω1(t)) + k12χw(Ω2)(t) + δ/2,

for t ∈ [0, d] \ eδ/2. On the other hand

χE1(Φ̃1(Ω1 × Ω2)(t)) ≤ χE1(H(Ω1)(t)Φ1(Ω1 × Ω2)(t))

≤ χE1(co(Φ1(Ω1 × Ω2)(t))) = χE1(Φ1(Ω1 × Ω2)(t)).

Therefore, if we define as zero on the set eδ/2 all the functions in Φ̃1(Ω1 × Ω2),
then we can apply the result of [8] to derive the existence of a set êδ/2 with
meas(êδ/2) < δ/2, of a compact Kδ/2 and of a set of functions Gδ/2 ⊂ L1(E1)
such that g(t) ∈ Kδ/2 for all g ∈ Gδ/2 and for almost all t ∈ [0, d]. Moreover, for
every f belonging to Φ̃1(Ω1 × Ω2), there exists g ∈ Gδ/2 such that

‖f(t)− g(t)‖ ≤ k11χE1(Ω(t)) + k12χw(Ω2)(t) + δ, for t ∈ [0, d] \ (eδ/2 ∪ êδ/2).

Therefore k11χE1(Ω( · )) + k12χw(Ω2)( · ) ∈WB(Φ̃1(Ω1 × Ω2)), and so the oper-
ator

F̃ (x, y) = Λ0

(
Φ̃1(x, y)
Φ2(x, y)

)
is ν-condensing. Observe that it is bounded on C(E1)×Q.

Denote by Σ̃0 the solution set of F̃ then ind(Σ̃0, F̃0) = 1.
Finally, we prove that Σ̃0 = Σ0. Assume the contrary, it means that there

exists (
x̃

ỹ

)
∈ Σ̃0 \ Σ0.
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In this case, we have that x̃ 6∈ P1Σ0. Take now 0 < β < r. Since P1Σ0 is
a compact set, we can find t∗ such that

d(x̃(t), P1Σ0(t)) < β for t ∈ [0, t∗),(17)

d(x̃(t∗), P1Σ0(t∗)) = β.(18)

On the other hand, from (17), (18), we have that
(
ex
ey

)∣∣∣
[0,t∗]

∈ Σ̃t∗

0 . But, by

assumption Στ
0 = Σ0|[0,τ ], we have that Σt∗

0 = Σ0|[0,t∗] and then (18) is impos-
sible. �

Then by using standard methods of the topological degree theory for multi-
valued condensing operators in locally convex spaces (see [3]) we can derive the
following existence result for system (1).

Theorem 2. Assume the conditions of Lemma 1. Then there exists ε0 > 0
such that for all ε ∈ [0, ε0] the set Σε of the solutions of system (1) belonging
to C(E1) × Q is nonempty and upper semicontinuous with respect to ε in the
C(E1)× wL1(E2) topology.

3. Example

In what follows we provide an example illustrating how the assumptions on
the Nemytskĭı operators Φi, i = 1, 2, presented in the previous section can be
verified. This will be done by specifying a possible choice and the properties
of the nonlinear operators fi, which generate Φi, i = 1, 2. This example has
been formulated having in mind a concrete application of our abstract results to
a control problem in infinite dimensional spaces of the type of those considered
in [4], as aldready pointed out in the Introduction. Specifically, we consider the
following form for fi, i = 1, 2.

f1(t, x, y) = ψ1(t, x) + b11(x)y,(19)

f2(t, x, y) = ψ2(t, x) + b21(x)y + b22y.(20)

We assume the following conditions.

(a0) The multivalued operators ψi : R× E1 → Kv(Ei) satisfy the condition
that, for any x ∈ E1 there exists a selection g(t) ∈ ψi(t, x), for almost
all t ∈ R, belonging to L1(R), i = 1, 2.

(a1) For almost all t ∈ R the operators ψi(t, · ), i = 1, 2, are upper semicon-
tinuous.

(a2) There exist positive constants li1 such that χEi
(ψi(t,Ω)) ≤ li1χEi

(Ω),
i = 1, 2.

(a3) There exist positive constants Mi such that ‖ψi(t, x)‖Ei
≤Mi, i = 1, 2.
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We now formulate the assumptions on the operators

(21) bi1 : E1 → LK(E2, Ei), i = 1, 2,

where LK(E2, Ei) denotes the space of linear compact operators acting from E2

to Ei.

(a4) There exist positive constants mi1, i = 1, 2, such that

‖bi1(x)‖i ≤ mi1

for any x ∈ E1. Here ‖ · ‖i denotes the operator norm in LK(E2, Ei).
(a5) The maps x→ bi1(x), i = 1, 2, are continuous.
(a6) There exists a positive constant l22 such that the bounded linear oper-

ator b22 : E2 → E2 satisfies

(22) ‖b22‖ ≤ l22.

(a7) Finally, we assume the following

(23)
m22 + l22

γ
< 1.

Let R > 0 be sufficiently large and let

QR := {y ∈ L1(E2) : ‖y(t)‖E2
≤ R, for almost all t ∈ R}.

Now we prove that by (23) we get: Λ2(ε)Φ2(C(E1) × QR) ⊂ QR. This was
already noticed in Remark 1 (with Q = QR). For this, let ε > 0 and for almost
all t ∈ R we have

‖Λ2(ε)Φ2(x, y)(t)‖E2
≤ 1
ε

t∫
0

e−(1/ε)γ(t−s)[M2 + (m22 + l22)R] ds

≤ M2 + (m22 + l22)R
γ

.

For ε = 0, for almost all t ∈ R we have

‖Λ2(0)Φ2(x, y)(t)‖E2
≤ M2 + (m22 + l22)R

γ
.

By (23), if R > M2/(γ −m22 − l22) then we get the conclusion.
Let us prove now that the multivalued operators Φi are upper semicontinuous

from C(E1)× wL1(E2) to Kv-w(L1(Ei)), i = 1, 2. First observe that under our
assumptions on ψi we have that the associated Nemytskĭı operator are upper
semicontinuous (see for instance [16]). Therefore, it is sufficient to verify that
the operators (x, y) → bi1(x( · ))y( · ) are continuous in the topologies which we
have introduced in the previous section. From (a5) we have

(24) 〈y∗, bi1(xn)yn〉 → 〈y∗, bi1(x0)y0〉.
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Let us now verify conditions (A4) and (A5). From (a3) we have that, for any
Ω ⊂ C(E1),

χEi
(ψi(t,Ω(t))) ≤ li1 sup

t
χEi

(Ω(t)), i = 1, 2.

Therefore, if

Γi(Ω) := {g : g ∈ L1(Ei), g(t) ∈ ψi(t, x(t)), almost all t ∈ [0, d] and x ∈ Ω},

then

(25) χEi
(Γi(Ω)(t)) ≤ li1χEi

(Ω(t)).

From (25), (a5) and [8] we have for Ω1 ⊂ C(E1) and Ω2 ⊂ QR that

li1 sup
t
χE1(Ω1(t)) ∈WB(Γi(Ω1)).

Finally, observe that if ‖Ω2(t)‖ ≤ p(t), p ∈ L1(R) and b ∈WB(Ω2) then

χw(Ω2) ≤
d∫

0

b(t) dt and χw(b22Ω2) ≤ l22χw(Ω2)

we obtain (A4) and (A5) with k11 = l11, k12 = 0, k21 = dl21 and k22 = l22. This
concludes the example.
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