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FIXED POINT APPROACHES
TO THE SOLUTION OF INTEGRAL INCLUSIONS

Daniel C. Biles — Mark P. Robinson — John S. Spraker

Abstract. Solutions to generalizations of the Volterra and Hammerstein

integral inclusions are found by using the fixed point theorems of Covitz–
Nadler and Bohnenblust–Karlin. Several illustrative examples are pre-

sented. Some conditions are given which also allow Lipschitz solutions

to be obtained.

1. Introduction

Numerous studies have considered the Hammerstein integral inclusion

(1.1) x(t) ∈
∫ b
a

k(t, s)F (s, x(s)) ds+ g(t)

or the Volterra integral inclusion

(1.2) x(t) ∈
∫ t
a

k(t, s)F (s, x(s)) ds+ g(t).

We note that, as pointed out in [21], if k(t, s) = 0 for 0 ≤ t < s ≤ T , (1.1) be-
comes (1.2), and hence existence theorems for (1.1) also apply to (1.2). However,
stronger theorems for (1.2) might be proven by considering it directly. Existence
theorems for continuous solutions of (1.1) were studied in [2], [7], [9], [10], [19],
[21] and [22]. Existence for (1.2) was proven in [6], [17], [19], [21] and [22].
The results in [10], [20]–[22] were established by applying a set-valued version
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of the fixed point theorem due to Mönch found in [18]. Results found in [20]
were proven using a nonlinear alternative of the Leray–Schauder type. Existence
of solutions for integral inclusions in abstract spaces include [1], [7], [9], [10], [13],
[20]–[22]. Solutions which are in Lp rather than continuous were studied in [10]
and [22]. The structure of the solution set to integral inclusions was considered
in [6] and in [17]. Applications of integral inclusions can be found in [2], [7], [8],
[14], [15] and [23].
In this article we study more general forms of (1.1) and (1.2), namely,

x(t) ∈
∫ b
a

K(t, s, x(s)) ds+ g(t),(1.3)

x(t) ∈
∫ t
a

K(t, s, x(s)) ds+ g(t).(1.4)

Inclusions (1.3) and (1.4) were studied by Petrusel in [24].
Theorems 3.1, 3.3, and 3.7 cover cases not covered by Theorem 3.1 of [24],

and Theorem 3.8 covers examples not covered by Theorem 3.3 in [24].

2. Preliminaries

In this paper, | · | is used to denote either absolute value or the vector norm
in Rn, which of the two of these being evident from the context. The notation
‖ · ‖ is reserved for the sup norm in an appropriate function space. In a metric
space (X, d), we use Br(x) to denote the open ball {y : d(x, y) < r}.
We next list several definitions which play an important role in this paper.

Definitions 2.1.

(1) If (X, d) is a metric space and p(X) is the power set of X, then

pcl,cv(X) = {Y ∈ p(X) : Y is closed and convex}.

(2) A metric space (X, d) is ε-chainable (where ε > 0) if for each x, y ∈ X
there is a finite set of points z0 = x, z1, . . . , zn−1, zn = y such that d(zi−1, zi) < ε

for all i = 1, . . . , n.
(3) A mapping T from a metric space (X, d) into its nonempty, closed sub-

sets is (ε − λ)-uniformly locally contractive (where ε > 0 and 0 ≤ λ < 1) if
H(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ X such that d(x, y) < ε, where H repre-
sents the Hausdorff distance.
(4) Let F :X → p(Y ) be given, where X is a measurable space and Y is a

topological space. F is measurable if F−1(A) ≡ {x ∈ X : F (x) ∩ A 6= ∅} is
measurable for each open subset A of Y .
(5) Let F :X → p(Y )\{∅}, where X and Y are Hausdorff topological spaces.

We say that F is upper semicontinuous (u.s.c.) at x ∈ X if for any open set V
such that F (x) ⊆ V , there exists an open set U such that x ∈ U and F (U) ⊆ V .



Fixed Point Approaches to the Solution of Integral Inclusions 299

We say that F is upper semicontinuous if it is upper semicontinous at every
x ∈ X.
(6) Let F :X → p(Y )\{∅}, where X and Y are Hausdorff topological spaces.

We say that F is lower semicontinuous (l.s.c.) at x ∈ X if for any y ∈ F (x) and
any open set V (y) containing y, there exists an open set U containing x such
that F (x′) ∩ V (y) 6= ∅ for all x′ ∈ U . We say that F is lower semicontinuous if
it is lower semicontinous at every x ∈ X.
(7) Let T be a measure space, and let X and Y be metric spaces. A map

ϕ:T ×X → p(Y ) is said to be Carathéodory if

(a) for every x ∈ X, ϕ( · , x) is measurable, and
(b) for every t ∈ T , ϕ(t, · ) is continuous.
(8) Let X be a metric space and for every t ∈ [a, b], let C(t) ⊆ X be

a given set. A map F : [a, b] × X → p(Rn) is said to be measurable/Lipschitz
on {C(t)}t∈[a,b] if for every t ∈ [a, b], there exists k(t) ≥ 0 such that
(a) for all x ∈ X, F ( · , x) is measurable, and
(b) for all t ∈ [a, b], F (t, · ) is k(t)-Lipschitz on C(t).
(9) LetX be a Banach space, suppose ∅ 6= D ⊆ X, and let F :D → p(D)\{∅}.

A point x ∈ X is called a fixed point of F if x ∈ Fix(F ) = {y ∈ D : y ∈ F (y)}.

We now state, as lemmas, some important results from the literature which
are used in the proofs of the theorems in this paper. In particular, Lemmas 2.2
and 2.7 are, respectively, the Covitz–Nadler and Bohnenblust–Karlin fixed point
theorems.

Lemma 2.2 ([11, Corollary 4]). Let (X, d) be a complete ε-chainable metric
space and let T :X → p(X) be nonempty, closed valued and (ε − λ)-uniformly
locally contractive. Then T has a fixed point.

We note that C[a, b] is a complete ε-chainable metric space.

Lemma 2.3 ([25, Theorem 2]). Let S be a complete measurable space, X be
a Polish space (a complete, separable metric space) and Y be a separable Banach
space. Suppose that F (t, x):S × X → pcl,cv(Y ) \ {∅} is jointly measurable and
lower semicontinuous in x for each fixed t ∈ S. Then, there exists f :S×X → Y

such that f(t, x) ∈ F (t, x) for every (t, x) ∈ S ×X, f is jointly measurable and
f is continuous in x for each fixed t ∈ S.

Lemma 2.4 ([4, Theorem 8.1.3]). Let X be a measurable space, Y a complete
separable metric space, and F a measurable set-valued map from X to closed
nonempty subsets of Y . Then there exists a measurable function f :X → Y such
that f(x) ∈ F (x) for every x ∈ X. (We shall refer to such an f as a measurable
selection of F.)
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Lemma 2.5 ([4, Theorem 9.5.3]). Let X be a metric space, let F : [a, b]×X →
pcl,cv(Rn) \ {∅}, let z: [a, b] → X be a single-valued map, and let w: [a, b] → Rn

be measurable. For every t ∈ [a, b], let C(t) ⊆ X be a given set. Suppose that
F is Carathéodory and measurable/Lipschitz on {C(t)}t∈[a,b], and let α(t), t ∈
[a, b], denote the corresponding Lipschitz constants. Suppose further that w(t) ∈
F (t, z(t)) almost everywhere in [a, b]. Then, there exists a measurable/Lipschitz
selection f of F on {C(t)}t∈[a,b] such that f(t, · ) is 5nα(t)-Lipschitz on C(t)
and for almost every t ∈ [a, b], w(t) = f(t, z(t)).

Lemma 2.6 ([16, Proposition 15.6]). Let X and Y be metric spaces. Let
φ:X → p(Y ) be lower semicontinuous and let f :X → Y , λ:X → (0,∞) be
continuous. Define ψ:X → p(Y ) by ψ(x) = Bλ(x)(f(x)). Assume also for all
x ∈ X that φ(x) ∩Bλ(x)(f(x)) 6= ∅. Then, φ ∩ ψ is lower semicontinuous.

Lemma 2.7 ([12, Corollary 11.3(e)], [5]). Let X be a real Banach space,
∅ 6= D ⊆ X be closed bounded convex and F :D → pcl,cv(X) \ {∅} be upper
semicontinuous. If F (D) ⊆ D and F (D) is compact, then F has a fixed point.

3. Main results

Our first theorem is as follows.

Theorem 3.1. Let K: [a, b] × [a, b] × Rn → pcl,cv(Rn) \ {∅} satisfy the fol-
lowing conditions:

(a) For all t ∈ [a, b], x ∈ C[a, b], there exists M : [a, b] → R such that M is
integrable and nonnegative and K(t, · , x( · )) ⊆M( · )B1(0) a.e. on [a, b].

(b) For all x ∈ C[a, b], K(t, s, x(s)): [a, b] × [a, b] → p(Rn) is jointly mea-
surable.

(c) For all (s, u) ∈ [a, b] × Rn, K( · , s, u): [a, b] → p(Rn) is lower semicon-
tinuous.

(d) There exists an ε > 0 such that for all (t, s) ∈ [a, b] × [a, b], u, v ∈ Rn

with |u − v| < ε, H(K(t, s, u),K(t, s, v)) ≤ l(t, s)|u − v|, where l is
continuous in t and jointly measurable in (t, s) and

sup
t∈[a,b]

∫ b
a

l(t, s) ds < 1.

(e) g: [a, b]→ Rn is continuous.

Then, there exists a continuous solution to the integral inclusion

x(t) ∈
∫ b
a

K(t, s, x(s)) ds+ g(t) for t ∈ [a, b].
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Proof. Define T :C[a, b]→ p(C[a, b]) by

T (x) =
{
v ∈ C[a, b] : v(t) ∈

∫ b
a

K(t, s, x(s)) ds+ g(t), t ∈ [a, b]
}
.

Claim 1. For all x ∈ C[a, b], there exists k: [a, b] × [a, b] → Rn such that,
for all t, k(t, s) is an integrable selection of K(t, s, x(s)) and k(t, s) is continuous
in t.

Note that by assumptions (a)–(c) we may apply Lemma 2.3 to K(t, s, x(s)):
[a, b]× [a, b]→ pcl,cv(Rn) \ {∅} to obtain the desired k.

Claim 2. T (x) 6= ∅ for each x ∈ C[a, b].

This follows easily from Claim 1 and assumption (e).

Claim 3. T (x) is closed for each x ∈ C[a, b].

Assumptions (a) and (b) allow us to use part 3 of Theorem 8.6.4 in [4] to
verify this claim.

Claim 4. For each x1, x2 ∈ C[a, b] with ‖x1 − x2‖ < ε, for each γ > 0,
for each k1 that satisfies Claim 1 for x = x1, there exists a k2 that satisfies
Claim 1 for x = x2 such that for all t ∈ [a, b], for almost all s ∈ [a, b], we have
|k1(t, s)− k2(t, s)| < l(t, s)‖x1 − x2‖+ γ.

To prove Claim 4, we proceed as follows. Define F : [a, b]× [a, b]→ p(Rn) by
F (t, s) = BC(k1(t, s)) ∩K(t, s, x2(s)), where C = l(t, s)‖x1 − x2‖+ γ.

Subclaim 4a. F is nonempty, closed, and convex valued.

Fix (t, s). Recall that k1(t, s) ∈ K(t, s, x1(s)). We have by assumption (d)
that there exists k∗2 ∈ K(t, s, x2(s)) such that

|k1(t, s)− k∗2 | < l(t, s)|x1(s)− x2(s)|+ γ ≤ l(t, s)‖x1 − x2‖+ γ.

Thus, k∗2 is also in BC(k1(t, s)) ⊆ BC(k1(t, s)). Since both BC(k1(t, s)) and
K(t, s, x2(s)) are closed and convex valued, we have Subclaim 4a.

Subclaim 4b. F is jointly measurable in (t, s).

Clearly, BC(k1(t, s)) is jointly measurable in (t, s) since k1 is. Using assump-
tion (b), we may apply Proposition 3.4a, p. 25 of [12], to get Subclaim 4b.

Subclaim 4c. F is lower semicontinuous in t for fixed s ∈ [a, b].

This is a direct application of Lemma 2.6.

We may now apply Lemma 2.3 to F to obtain Claim 4.



302 D. C. Biles — M. P. Robinson — J. S. Spraker

Claim 5. T is (ε− λ)-uniformly locally contractive, where

λ = sup
t∈[a,b]

∫ b
a

l(t, s) ds

and ε is from (d).

To prove Claim 5, we proceed as follows. Let x1, x2 ∈ C[a, b] with ‖x1−x2‖ <
ε and let δ > 0. Let v1 ∈ T (x1). Then there exists a k1 satisfying Claim 1 for
x = x1 such that v1(t) =

∫ b
a
k1(t, s) ds + g(t). Apply Claim 4 to obtain k2, for

γ = δ/(b− a). Note that

v2(t) =
∫ b
a

k2(t, s) ds+ g(t) ∈ T (x2).

Also,

sup
t∈[a,b]

|v1(t)− v2(t)| = sup
t∈[a,b]

∣∣∣∣ ∫ b
a

[k1(t, s)− k2(t, s)] ds
∣∣∣∣

≤ sup
t∈[a,b]

∫ b
a

|k1(t, s)− k2(t, s)| ds

≤ sup
t∈[a,b]

∫ b
a

[
l(t, s)‖x1 − x2‖+

δ

b− a

]
ds (by Claim 4)

=λ‖x1 − x2‖+ δ.

Since v1 was arbitrary, we have shown that

sup
w1∈T (x1)

inf
w2∈T (x2)

‖w1 − w2‖ ≤ λ‖x1 − x2‖.

Similarly, it can be shown that

sup
w2∈T (x2)

inf
w1∈T (x1)

‖w1 − w2t‖ ≤ λ‖x1 − x2‖,

establishing Claim 5.

Using Claims 2, 3 and 5, we may apply Lemma 2.2 to finish the proof of the
theorem. �

Example 3.2. Let K: [−1, 1]× [−1, 1]× R→ p(R) be defined by

K(t, s, u) = F (t) + χQ(s) +
u

4
,

where

F (t) =

{
{0} for t = 0,

[0, 1] for t 6= 0,



Fixed Point Approaches to the Solution of Integral Inclusions 303

χQ represents the characteristic function of the rationals, and let g(t) = sin t.
The hypotheses of Theorem 3.1 can be easily verified and hence there exists a
continuous solution x to the integral inclusion

x(t) ∈
∫ 1
−1

[
F (t) + χQ(s) +

x(s)
4

]
ds+ g(t).

We note that K does not satisfy all of the hypotheses of Theorem 3.1 in [24].

Theorem 3.3. Let K: [a, b] × [a, b] × Rn → pcl,cv(Rn) \ {∅} satisfy the fol-
lowing conditions:

(a) K(t, · , u) is measurable.
(b) There exists M : [a, b] → R nonnegative and integrable such that for all
(t, u) ∈ [a, b]× Rn, K(t, s, u) ⊆M(s)B1(0) a.e. s ∈ [a, b].

(c) For all ε > 0, t ∈ [a, b], there exists η(t, ε) such that for all u, v ∈ Rn

and all s ∈ [a, b], |u− v| < η(t, ε)⇒ H(K(t, s, u),K(t, s, v)) < ε.
(d) there exists T ∈ L1[a, b], T > 0, such that for all t, t0 ∈ [a, b] and

u ∈ Rn,

H(K(t, s, u),K(t0, s, u)) ≤
T (s)
5n
|t− t0|.

(e) g is Lipschitz on [a, b].

Then, the inclusion x(t) ∈
∫ b
a
K(t, s, x(s)) ds+ g(t) has a Lipschitz solution.

Remark 3.4. Note that assumptions (d) and (e) allow us to obtain existence
of a Lipschitz, rather than simply continuous, solution.

Proof. Let

K0 =
∫ b
a

M(s) ds+ ‖g‖ and τ =
∫ b
a

T (s) ds+ L,

where L is the Lipschitz constant of g. Define DτK0 by

DτK0 = {v ∈ C[a, b] : ‖v‖ ≤ K0, v has Lipschitz constant τ}.

Note that DτK0 is nonempty, closed, convex and bounded in C[a, b]. Define
Φ:DτK0 → p(DτK0) by

Φ(x) =
{
v ∈ DτK0 : v(t) ∈

∫ b
a

K(t, s, x(s)) ds+ g(t), t ∈ [a, b]
}
.

Claim 1. Φ(x) 6= ∅ for all x ∈ DτK0 .

Let G(s, t) = K(t, s, x(s)). Since K is closed and convex valued and for t
fixed, K(t, s, u) is Carathéodory in s and u, Theorem 8.2.8 in [4] implies that
G( · , t) = K(t, · , x( · )) is measurable. Also, we know from condition (d) that
G(s, · ) is Lipschitz. Since G( · , t) is measurable and G(s, · ) is Lipschitz, it
follows that G(s, t) is Carathéodory in s and t, and hence (again using Theorem
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8.2.8 in [4]) G(s, s) is measurable. It then follows from Lemma 2.4 that G(s, s)
has a measurable selection w(s). From Lemma 2.5 we may conclude that G(s, t)
has a measurable/Lipschitz selection K1(t, s), having Lipschitz constant T (s).
Now, let

v1(t) =
∫ b
a

K1(t, s) ds+ g(t).

Then

|v1(t)− v1(t0)| ≤
∫ b
a

|K1(t, s)−K1(t0, s)| ds+ |g(t)− g(t0)|

≤
(∫ b
a

T (s) ds
)
|t− t0|+ L|t− t0| = τ |t− t0|

and

‖v1‖ ≤ sup
t∈[a,b]

∫ b
a

|K1(t, s)| ds+ ‖g‖ ≤
∫ b
a

M(s) ds+ ‖g‖ = K0.

It follows that v1 ∈ DτK0 , completing the proof of the claim.

Note that DτK0 is equicontinuous since it is defined with a uniform Lipschitz
constant. Since Φ(DτK0) ⊆ DτK0 , it follows that Φ(DτK0) is equicontinuous and
bounded. It follows from the Arzela–Ascoli Theorem that Φ(DτK0) is compact
in C[a, b].

Claim 2. Φ is upper semicontinuous.

To show this, we will show that Φ has a closed graph. It then follows that Φ
is upper semicontinuous. The argument to show that Φ has closed graph is as
follows.
Suppose xn → x and yn → y in C[a, b], with yn ∈ Φ(xn) for all n. We need

to show that y ∈ Φ(x). Fix t ∈ [a, b]. Let m ∈ Z+ be arbitrary. Since xn → x,
there exists some Nm such that if n > Nm then ‖xn − x‖ < η(t, 1/m). Now,
|xn(s)−x(s)| < η(t, 1/m) implies that H(K(t, s, xn(s)),K(t, s, x(s))) < 1/m, so
K(t, s, xn(s)) ⊆ B1/m(K(t, s, x(s))). Since yn ∈ Φ(xn),

yn(t) ∈
∫ b
a

K(t, s, xn(s)) ds+ g(t),

and therefore

yn(t) =
∫ b
a

Kn(t, s) ds+ g(t),

where Kn(t, s) ∈ K(t, s, xn(s)) for all s. From this, it follows that Kn(t, s) ∈
B1/m(K(t, s, x(s))) for all s. Now, consider the set valued function

G(s) = B1/m(Kn(t, s)) ∩K(t, s, x(s))

for t fixed. As in the proof of Claim 1, K(t, s, x(s)) is measurable in s; also
B1/m(Kn(t, s)) is measurable with closed images. Hence, G(s) is measurable
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with closed images. Thus, by Lemma 2.4 we can choose K(m)(t, s) ∈ G(s)
measurable in s such that |Kn(t, s)−K(m)(t, s)| < 1/m for all s. Therefore,∣∣∣∣y(t)− (∫ b

a

K(m)(t, s) ds+ g(t)
)∣∣∣∣

≤‖yn − y‖+
∣∣∣∣yn(t)− (∫ b

a

K(m)(t, s) ds+ g(t)
)∣∣∣∣

= ‖yn − y‖+
∣∣∣∣ ∫ b
a

(K(m)(t, s)−Kn(t, s)) ds
∣∣∣∣

≤‖yn − y‖+
∫ b
a

|K(m)(t, s)−Kn(t, s)| ds

≤‖yn − y‖+
b− a
m

for n > Nm.

Now, let ε > 0 be arbitrary and choose m such that (b − a)/m < ε/2 and
choose N > Nm such that ‖yn − y‖ < ε/2 for all n > N . Then, if n > N we
have ∣∣∣∣y(t)− (∫ b

a

K(m)(t, s) ds+ g(t)
)∣∣∣∣ < ε

for fixed t. SinceK is convex valued and integrably bounded,
∫ b
a
K(t, s, x(s)) ds+

g(t) is closed (by Theorem 8.6.4 of [4]). Since y(t) is arbitrarily close to the set∫ b
a
K(t, s, x(s)) ds + g(t), it must be a limit point and hence (since the set is

closed), y(t) ∈
∫ b
a
K(t, s, x(s)) ds+ g(t). Since t ∈ [a, b] was arbitrary, this shows

that y ∈ Φ(x). We have shown that Φ has closed graph, and therefore Φ is upper
semicontinuous. This completes the proof of Claim 2.

We use Claims 1 and 2 and apply the Bohnenblust–Karlin fixed point theorem
(Lemma 2.7) to Φ to yield a solution to the integral inclusion which is Lipschitz.�

Before considering examples, we list several conditions which would imply
some of the conditions in Theorem 3.3. First, if K is bounded (there exists K0
such that for all u ∈ Rn, t ∈ [a, b], |K(t, s, u)| ≤ K0 a.e. s ∈ [a, b]), then K
is clearly integrably bounded (condition (b)). Condition (c) is satisfied if, for
τ fixed, {Ks(u) = K(τ, s, u), s ∈ [a, b]} is equicontinuous. Also, conditions (c)
and (d) are satisfied if

H(K(t, s, u),K(t0, s, v)) ≤
T (s)
5n
|t− t0|+ L|u− v|

or if

H(K(t, s, u),K(t0, s, v)) ≤
L

5n
|(t, u)− (t0, v)|

(Lipschitz in t, u with constant independent of s).
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Example 3.5. We now exhibit a single-valued function K which satisfies
the conditions of Theorem 3.3. Let f :Rn → Rn be any uniformly continuous
bounded function. Define K(t, s, u) by K(t, s, u) = stf(u). We make the follow-
ing observations.

• K: [a, b]× [a, b]× Rn → Rn is measurable in s (condition (a)).
• |K(t, s, u)| = |stf(u)| ≤ c2M ∈ L1[a, b], where c = max{|a|, |b|} and
M = supu∈Rn |f(u)| (condition (b)).
• Clearly |K(t, s, u) − K(t, s, v)| ≤ c2|f(u) − f(v)|. Given any ε > 0,
choose η > 0 such that if |u − v| < η then |f(u) − f(v)| < ε/c2. Then
|K(t, s, u)−K(t, s, v)| < ε whenever |u− v| < η (condition (c)).
• H(K(t, s, u),K(t0, s, u)) = |K(t, s, u)−K(t0, s, u)| ≤Mc|t− t0| (which
gives us condition (d)).

We note that K does not satisfy all of the hypotheses of Theorem 3.1 in [24].

Example 3.6. Example 3.5 may be converted into a set-valued example as
follows. Define K(t, s, u) = B1(stf(u)), where f is as given above. Then

• K is measurable in s (condition (a)).
• |K(t, s, u)| ≤ c2M + 1 ∈ L1[a, b], where c and M are as given in Exam-
ple 3.5 (giving us condition (b)).
• Since the Hausdorff distance between balls of the same radius is the same
as the distance between their centers, we can proceed as in Example 3.5
to conclude that
(a) for any ε > 0, there exists η > 0 such that

H(K(t, s, u),K(t, s, v)) < ε

whenever |u− vt| < η (condition (c)), and also
(b) H(K(t, s, u),K(t0, s, u)) ≤Mc|t− t0| (giving us condition (d)).

We now consider an alternate theorem, in which we assumeK is bounded and
we replace the Lipschitz condition on K with a continuity condition to obtain
a continuous solution.

Theorem 3.7. Let K: [a, b] × [a, b] × Rn → pcl,cv(Rn) \ {∅} satisfy the fol-
lowing conditions:

(a) K(t, · , u) is measurable.
(b) K is bounded.
(c) For all ε > 0, t ∈ [a, b], there exists η(t, ε) such that if for all u, v ∈ Rn

and all s ∈ [a, b], |u− v| < η(t, ε) then H(K(t, s, u),K(t, s, v)) < ε.
(d) For all ε > 0, there exists δ(ε) > 0 such that if |t − t0| < δ(ε) then

H(K(t, s, u),K(t0, s, u)) < ε for all (s, u) ∈ [a, b]× Rn.
(e) g ∈ C[a, b].
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Then, the inclusion x(t) ∈
∫ b
a
K(t, s, x(s)) ds+ g(t) has a continuous solution.

Proof. Let x ∈ C[a, b]. Define G(s, t) = K(t, s, x(s)); note that G is
Carathéodory in s and t. From Theorem 8.2.8 in [4] we know that G(s, s) is
measurable, and hence (from Lemma 2.4) it follows that G(s, s) has a measur-
able selection. Let w(s) be such a selection. Let f(s, t) be that element of
G(s, t) which is closest to w(s). This element, called the projection, satisfies the
conditions that f(s, t) ∈ G(s, t) and d(w(s), G(s, t)) = |f(s, t)− w(s)|.
We now show continuity of f in t by considering two cases.
Let ε > 0 be arbitrary, and let δ = δ(min{ε, ε/(2K0)}), where K0 ≥

max{‖K‖, (b− a)‖K‖}. Let s∗, t∗ ∈ [a, b] be arbitrary.

Case 1. Suppose w(s∗) = f(s∗, t∗). Then w(s∗) ∈ G(s∗, t∗) and therefore
(from (c)) there exists some y ∈ G(s∗, t) such that |w(s∗) − y| < ε whenever
|t− t∗| < δ. Hence |w(s∗)− f(s∗, t)| < ε, because f(s∗, t) is the projection, and
therefore |f(s∗, t∗)− f(s∗, t)| = |w(s∗)− f(s∗, t)| < ε. This completes Case 1.

Case 2. Suppose that |w(s∗)−f(s∗, t∗)| > 0. Let |t−t∗|<δ(min{ε, ε/(2K0)}).

Claim 1. If H(G(s∗, t), G(s∗, t∗)) < ε then

|f(s∗, t)− w(s∗)| < |f(s∗, t∗)− w(s∗)|+ ε.

If H(G(s∗, t), G(s∗, t∗)) < ε then there exists y ∈ G(s∗, t) such that |y −
f(s∗, t∗)| < ε. Hence,

|y − w(s∗)| ≤ |y − f(s∗, t∗)|+ |f(s∗, t∗)− w(s∗)| < |f(s∗, t∗)− w(s∗)|+ ε.

Therefore,

|f(s∗, t)− w(s∗)| = d(w(s∗), G(s∗, t)) ≤ |y − w(s∗)| < |f(s∗, t∗)− w(s∗)|+ ε,

which proves Claim 1.

Claim 2. Let H(G(s∗, t), G(s∗, t∗)) < ε. If ‖G‖ ≤ K0 then

|f(s∗, t)− w(s∗)|2 < |f(s∗, t∗)− w(s∗)|2 + 4K0ε+ ε2.

Using Claim 1, we can conclude that

|f(s∗, t)− w(s∗)|2 < |f(s∗, t∗)− w(s∗)|2 + 2ε|f(s∗, t∗)− w(s∗)|+ ε2

≤ |f(s∗, t∗)− w(s∗)|2 + 4K0ε+ ε2.

This completes the proof of Claim 2.

Then, since (by (d)) H(G(s∗, t), G(s∗, t∗)) < ε/(2K0), it follows that there
exists yt ∈ G(s∗, t∗) such that

|f(s∗, t)− yt| <
ε

2K0
≤ ε

|f(s∗, t∗)− w(s∗)|
,
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which implies that

(3.1) 〈f(s∗,t∗)− w(s∗), f(s∗, t)〉
= 〈f(s∗, t∗)− w(s∗), f(s∗, t)− yt〉+ 〈f(s∗, t∗)− w(s∗), yt〉
> 〈f(s∗, t∗)− w(s∗), yt〉 − ε.

Corollary 1 of [3, p. 23] implies that, for any y ∈ G(s∗, t∗),

〈f(s∗, t∗)− w(s∗), f(s∗, t∗)− y〉 ≤ 0,

from which it follows that

(3.2) 〈f(s∗, t∗)− w(s∗), y〉 ≥ 〈f(s∗, t∗)− w(s∗), f(s∗, t∗)〉.

Using (3.1) and (3.2) with y = yt, we obtain the inequality

(3.3) 〈f(s∗, t∗)− w(s∗), f(s∗, t)− f(s∗, t∗)〉 > −ε.

It can easily be shown that, in any Hilbert space over R,

‖x‖2 = ‖y‖2 + ‖x− y‖2 + 2〈y, x− y〉.

Applying this inequality to the present situation, we have

(3.4) |f(s∗, t)− w(s∗)|2 = |f(s∗, t∗)− w(s∗)|2 + |f(s∗, t)− f(s∗, t∗)|2

+ 2〈f(s∗, t∗)− w(s∗), f(s∗, t)− f(s∗, t∗)〉.

Using (3.3), (3.4) and Claim 2, we obtain

|f(s∗, t∗)− f(s∗, t)|2 − 2ε
< |f(s∗, t∗)− f(s∗, t)|2 + 2〈f(s∗, t∗)− w(s∗), f(s∗, t)− f(s∗, t∗)〉
= |f(s∗, t)− w(s∗)|2 − |f(s∗, t∗)− w(s∗)|2 < 4K0ε+ ε2.

Therefore,
|f(s∗, t∗)− f(s∗, t)|2 < (4K0 + 2)ε+ ε2.

Let ε > 0 and let τ(ε) = −(1 + 2K0) +
√
(1 + 2K0)2 + ε2. Choose δ > 0

such that if |t − t0| < δ then H(G(s, t), G(s, t0)) < min{ε, ε/(2K0), τ(ε)}. It is
straightforward to show that (4K0 + 2)τ(ε) + [τ(ε)]2 = ε2. Using this equation,
it can be shown that if |t∗ − t| < δ then

H(G(s∗, t), G(s∗, t∗)) < min{ε, ε/(2K0), τ(ε)} = ε̂.

This implies

|f(s∗, t∗)− f(s∗, t)|2 < (4K0 + 2)ε̂+ ε̂2 ≤ (4K0 + 2)τ(ε) + [τ(ε)]2 = ε2

and therefore
|f(s∗, t∗)− f(s∗, t)| < ε for all s∗ ∈ [a, b],

which completes Case 2.
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Replacing ε in either case by ε/(b− a) tells us that if δ is chosen so that

H(G(s∗, t), G(s∗, t∗)) < min
{

ε

b− a
,

ε

2K0(b− a)
, τ

(
ε

b− a

)}
,

then

(3.5) |f(s∗, t∗)− f(s∗, t)| < ε

b− a
for all s∗ ∈ [a, b].

Let β = min{ε/(b− a), ε/(2K0), τ(ε/(b− a))}. Define D ⊆ C[a, b] by

D = {v ∈ C[a, b] : ‖v‖ ≤ K0 + ‖g‖ and, for all ε > 0,
if |t− t0| < δ(β) then |v(t)− v(t0)| ≤ ε+ |g(t)− g(t0)|}.

Note that D 6= ∅ since the zero function is an element of D. Since D is
equicontinuous and bounded, D is compact. D is closed, convex, and bounded.
Define T :D → p(D) by

T (x) =
{
v ∈ D : v(t) ∈

∫ b
a

K(t, s, x(s)) ds+ g(t), t ∈ [a, b]
}
.

Claim 3. T (x) 6= ∅ for all x ∈ D.

Define G(s, t) = K(t, s, x(s)). Note that G is Carathéodory because G( · , t)
is measurable and G(s, · ) is continuous. Let w(s) be a measurable selection of
G(s, s). Let ε > 0. From condition (d) it follows that we can choose δ such that
if |t− t0| < δ(β) then H(G(s, t), G(s, t0)) < β. Now, let

v(t) = g(t) +
∫ b
a

f(s, t) ds.

Then, using (3.5), we have

|v(t)− v(t0)| ≤
∫ b
a

|f(s, t)− f(s, t0)| ds+ |g(t)− g(t0)| < |g(t)− g(t0)|+ ε.

Therefore, v ∈ T (x). This completes the proof of Claim 3.
To complete the proof of Theorem 3.7 we then proceed as in the proof of

Theorem 3.3, beginning with the proof of Claim 2 in the proof of that theorem,
using Bohnenblust–Karlin to show that T has a fixed point. That the fixed point
is continuous follows immediately since D ⊆ C[a, b]. �

All of the theorems thus far have dealt with the inclusion (1.3), but inclusion
(1.4) can be examined as well. For example, Theorem 3.3 can be altered to
accommodate this case, as shown in the following theorem.
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Theorem 3.8. Let K: [a, b] × [a, b] × Rn → pcl,cv(Rn) \ {∅} satisfy the fol-
lowing conditions:

(a) K(t, · , u) is measurable.
(b) There exists M : [a, b]→ R nonnegative and integrable such that for all
(t, u) ∈ [a, b]× Rn, K(t, s, u) ⊆M(s)B1(0) a.e. s ∈ [a, b].

(c) For all ε > 0, t ∈ [a, b], there exists η(t, ε) such that for all u, v ∈ Rn

and all s ∈ [a, b], if |u− v| < η(t, ε) then H(K(t, s, u),K(t, s, v)) < ε.
(d) There exists T ∈ L1[a, b], T > 0, such that for all t, t0 ∈ [a, b] and

u ∈ Rn,

H(K(t, s, u),K(t0, s, u)) ≤
T (s)
5n
|t− t0|.

(e) g ∈ C[a, b]. Then, the inclusion x(t) ∈
∫ t
a
K(t, s, x(s)) ds + g(t) has a

continuous solution.

Proof. The proof follows along the lines of that of Theorem 3.3, now with
K0 =

∫ b
a
M(s) ds+ ‖g‖, with DτK0 being replaced by

DTK0 =
{
v ∈ C[a, b] : ‖v‖ ≤ K0 and for all t, t0 ∈ [a, b],

|v(t)− v(t0)| ≤
(∫ b
a

T (s) ds
)
|t− t0|+

∣∣∣∣ ∫ t
t0

M(s) ds
∣∣∣∣+ |g(t)− g(t0)|},

and with Φ:DτK0 → p(DτK0) being replaced by Ψ:DTK0 → p(DTK0), defined
by

Ψ(x) =
{
v ∈ DTK0 : v(t) ∈

∫ t
a

K(t, s, x(s)) ds+ g(t), t ∈ [a, b]
}
. �
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