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APPROXIMATE SELECTIONS
IN α-CONVEX METRIC SPACES
AND TOPOLOGICAL DEGREE

Francesco S. de Blasi — Giulio Pianigiani

Abstract. The existence of continuous approximate selections is proved
for a class of upper semicontinuous multifunctions taking closed α-convex

values in a metric space equipped with an appropriate notion of α-convexity.

The approach is based on the definition of pseudo-barycenter of an ordered
n-tuple of points. As an application, a notion of topological degree for

a class of α-convex multifunctions is developed.

1. Introduction

In linear spaces the notion of convexity plays a fundamental role in several
problems of analysis, for instance, in the construction of continuous selections
(Michael [22]), in fixed point theorems (Kakutani [19], Ky Fan [9]), in topolog-
ical degree theory (Hukuhara [17], Cellina and Lasota [4], Ma [21], Petryshyn
and Fitzpatrick [26]). A full account of the above and other subject-matters
related to convexity can be found in the comprehensive monographs by Hu and
Papageorgiou [16] and Repovš and Semenov [28].

In non linear spaces, in absence of a natural notion of convex set, different
approaches to convexity have been developed so far.
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Michael [23] introduces, in a metric space Y , an axiomatically defined convex
structure which permits one to take “convex combinations” of some, but not
necessarily all, ordered n-tuples of points of Y ; then by defining a convex set in
the obvious way, Michael establishes a metric version of his classical continuous
selection theorem. For similar ideas see also an earlier paper of Stone [29].
Further developments with application to selection theorems can be found in
Michael [23], Curtis [5], [6] and Pasicki [25], [26].

Another axiomatic approach to convexity in non linear spaces has been de-
veloped by van de Val in [32], [33], (see also Bielawski, [1]) who defines convex
the sets of a given family C of subsets of Y provided the following conditions
are satisfied: C contains Y and the empty set, the intersection of every family
of members of C, and the union of every up-directed family of members of C.
Several applications, including a generalization of Michael’s continuous selection
theorem, are presented. Axiomatic convex structures of different type, also useful
in selection problems, have been studied by Horvath in [15].

A further different viewpoint to convexity is due to Takahashi [30], who
considers a metric space Y to be convex if there exists a function w:Y × Y ×
[0, 1]→ Y satisfying

d(z, w(y1, y2, t)) ≤ (1− t)d(z, y1) + td(z, y2)

for all y1, y2, z ∈ Y and t ∈ [0, 1], where d is the metric of Y . Then by defining
convex any set A ⊂ Y such that w(y1, y2, t) ∈ A, for every y1, y2 ∈ A and
t ∈ [0, 1], Takahashi proves some fixed point theorems for nonexpansive mappings
in metric spaces. Related results in this direction can be found in Talman [31].

The approach to convexity we develop in the present paper is in the spirit of
Michael [23]. As in Curtis [5], [6] and Pasicki [26], it actually rests on appropriate
generalizations in a nonlinear space of the notions of a segment joining two points,
and of a barycenter of a finite set of points. More precisely, we consider a metric
space Y equipped with a continuous function α:Y ×Y ×[0, 1]→ Y which satisfies
the following conditions:

(i) α(y0, y0, t) = y0 for every y0 ∈ Y and t ∈ [0, 1],
(ii) α(y1, y2, 0) = y1, α(y1, y2, 1) = y2 for every (y1, y2) ∈ Y × Y ,
(iii) there is 0 < rα ≤ +∞ such that for every (y1, y2), (y1, y2) ∈ Y × Y ,
with d(y1, y1) < rα, d(y2, y2) < rα one has

h(Λα(y1, y2),Λα(y1, y2)) ≤ max{d(y1, y1), d(y2, y2)}.

Here Λα(y1, y2) = {α(y1, y2, t) | t ∈ [0, 1]}, and h is the Pompeiu–Hausdorff
distance in the space of the non empty compact subsets of Y . Then Y , equipped
with the mapping α, is called Lipschitz α-convex metric space (“α” stands for
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“arcwise”). Moreover, if α satisfies (i), (ii) and, instead of (iii), the weaker
condition (iii) of Definition 3.1 below, then Y is called α-convex .

A subset A of Y is called α-convex if, for every (y1, y2) ∈ A×A and t ∈ [0, 1],
one has α(y1, y2, t) ∈ A.
When Y is normed, (i)–(iii) are trivially satisfied by letting α(y1, y2, t) =

(1 − t)y1 + ty2, with (y1, y2) ∈ Y × Y and t ∈ [0, 1], and thus one recovers the
usual notion of convex set.

In a normed space the notion of barycenter of a finite set of points enters
naturally in approximation and selection problems for multifunctions, when par-
titions of unity are employed. In our α-convex metric space setting we introduce,
for an ordered n-tuple of points, the notion of pseudo-barycenter . This retains
only a few properties of the barycenter, yet it is still useful in approximation and
selection problems. In fact, by using pseudo-barycenters and partition of unity
techniques, we establish a metric version of Cellina’s theorem [3], namely, the
existence of approximate continuous selections, for Pompeiu–Hausdorff upper
semicontinuous multifunctions with non empty closed bounded α-convex val-
ues. A metric version of Michael’s selection theorem for lower semicontinuous
multifunctions with α-convex values is proved in [7], by a similar approach.

It is worthwhile to point out that, in our axiomatic approach to convexity,
we tried to identify a minimum set of readily verifiable conditions, under which
a kind of barycentric calculus could be developed. Our conditions (i)–(iii) are
perhaps questionable from the point of view of generality, yet they are easily
verifiable, and also useful. In fact, condition (iii) makes possible to have that
the pseudo-barycenter we define is actually stable in the sense of Proposition
4.12, a crucial property in approximation theory for multifunctions, which is
introduced as an axiom by many authors.

The previous approximate selection result is used to define, as in [4], [17], the
topological degree for compact vector fields I − F , where I is the identity and
F is a Pompeiu–Hausdorff upper semicontinuous multifunction with non empty
compact α-convex values. When F is compact and convex valued, the above
reduces to the topological degree introduced by Hukuhara [17], and developed
by Cellina and Lasota [4], Ma [21], Petryshyn and Fitzpatrick [27]. Fixed point
theorems of Kakutani–Ky Fan type for multifunctions with α-convex values are
considered as well.

For a fairly general class of multifunctions with compact non convex val-
ues, approximate continuous selections have been constructed, by a different
method, by Górniewicz, Granas and Kryszewski [12] and Górniewicz and Las-
sonde [13] and hence used to develop an index theory. Moreover, for certain
classes of multifunctions with non convex values, a non elementary degree the-
ory was earlier constructed by Granas [14], and extended by Gęba and Granas
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[10], Górniewicz [11], Borisovitch, Gelman, Myshkis, Obukhovskĭı [2] (see [2],
[10], [11] for further references), following a homology theory approach.

The paper is organized as follows. Section 2 contains notation and termi-
nology. The notions of α-convex metric space, and pseudo-barycenter of a finite
set of points, are considered in Sections 3 and 4, respectively. In Section 5 it is
proved the existence of approximate continuous selections for α-convex valued
multifunctions. The definition of the topological degree for compact α-convex
valued vector fields is given in Section 6. A few properties of this degree including
an application to fixed point theory are presented in Section 7.

2. Notation and preliminaries

Throughout Y is a nonempty metric space with distance d, and 2Y the family
of all nonempty subsets of Y . If A ⊂ Y , by intA, A, ∂A we denote the interior,
closure, boundary of A.

For A, B nonempty subsets of Y , put

e(A,B) = sup
a∈A
d(a,B) where d(a,B) = inf

b∈B
d(a, b).

The space of all nonempty closed bounded subsets of Y is equipped with the
Pompeiu–Hausdorff metric

h(A,B) = max{e(A,B), e(B,A)},

under which it is complete, if Y is so.

By U(a, r), U [a, r] we mean respectively an open, closed ball in Y with center
a and radius r.

In the sequel, if a set A ⊂ Y is considered as a metric space, it is tacitly
assumed that A retains the metric of Y .

Unless the contrary is stated, the Cartesian product Y × Ỹ of two metric
spaces Y , Ỹ , with distances d, d̃ is always supposed to have distance given by

max{d(x, y), d̃(x̃, ỹ)} (x, x̃), (y, ỹ) ∈ Y × Ỹ .

Denote by M a metric space.

Definition 2.1. A multifunction F :M → 2Y is called Pompeiu–Hausdorff
upper semicontinuous (= h-u.s.c.) if, for every x ∈ M and ε > 0, there exists
δ = δ(x, ε) > 0 such that x′ ∈ U(x, δ) implies e(F (x′), F (x)) < ε.

The graph of a multifunction F :M → 2Y is the set, denoted graph F , given
by

graphF = {(x, y) ∈M × Y | x ∈M, y ∈ F (x)}.
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Definition 2.2. Given a multifunction F :M → 2Y and ε > 0, then any
continuous function fε:M → Y such that

e(graph fε, graphF ) < ε

is called an approximate continuous selection of F .

Definition 2.3. A sequence {fn} of approximate continuous selections fn:
M → Y of F :M → 2Y is said to be graph-convergent to F (for brevity, fn

gr→ F )
if

e(graph fn, graphF )→ 0 as n→∞.

For any nonempty set A we put An = A× . . .×A, and denote by (a1, . . . , an)
an element of An, i.e. an ordered n-tuple of points ai ∈ A, i = 1, . . . , n.
Let E be a normed space.
The convex hull, and the closed convex hull of a set A ⊂ E are denoted,

respectively, by coA and coA.

For (p, q) ∈ E2, we denote by [p, q] (resp. (p, q)) the closed (resp. open) non
oriented segment in E with end points p and q. When p 6= q the segments [p, q],
(p, q) are called non degenerate.

3. α-convex metric spaces

In this section we introduce the notion of α-convexity in metric spaces and
we consider some examples.
Set J = [0, 1]. For any map α:Y × Y × J → Y , and (y1, y2) ∈ Y × Y , we

agree to call (y1, y2)-locus induced by α the set Λα(y1, y2) given by

(3.1) Λα(y1, y2) = {y ∈ Y | y = α(y1, y2, t) for some t ∈ J}.

Definition 3.1. Let Y be a metric space, and let α:Y × Y × J → Y be a
continuous mapping satisfying the following conditions:

(a) α(y0, y0, t) = y0 for every y0 ∈ Y and t ∈ J ,
(b) α(y1, y2, 0) = y1, α(y1, y2, 1) = y2 for every (y1, y2) ∈ Y × Y ,
(c) there is rα, 0 < rα ≤ +∞, such that, for every 0 < ε < rα, there
exists 0 < η ≤ ε such that, whatever be (y1, y2), (y1, y2) ∈ Y × Y , with
d(y1, y1) < ε and d(y2, y2) < η, one has

(3.2) h(Λα(y1, y2),Λα(y1, y2)) < ε.

Then Y , equipped with the mapping α, is called α-convex metric space. If the
continuous function α satisfies (a)–(c), the latter with η = ε, then Y is called
strongly α-convex metric space.
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Remark 3.2. An α-convex metric space is contractible, hence arcwise con-
nected. Observe also that the (y1, y2)-locus Λα(y1, y2) is not necessarily α-
convex, and one can have Λα(y1, y2) 6= Λα(y2, y1).

Definition 3.3. Let Y be a metric space and let α:Y × Y × J → Y be a
continuous function satisfying (a), (b) of Definition 3.1 and, instead of (c), the
following:

(c)′ There is rα, 0 < rα ≤ +∞, such that for every (y1, y2), (y1, y2) ∈ Y ×Y ,
with d(y1, y1) < rα, d(y2, y2) < rα, one has

h(Λα(y1, y2),Λα(y1, y2)) ≤ max{d(y1, y1), d(y2, y2)}.

Then Y , equipped with the mapping α, is called Lipschitz α-convex metric space.

Definition 3.4. Let Y be a metric space and let α:Y × Y × J → Y be a
continuous function satisfying (a), (b) of Definition 3.1 and, instead of (c), the
following condition (c)′′ (resp. (c)′′′):

(c)′′ There is rα, 0 < rα ≤ +∞, such that, for every 0 < ε < rα, there
exists 0 < η ≤ ε such that, whatever be (y1, y2), (y1, y2) ∈ Y × Y , with
d(y1, y1) < ε and d(y2, y2) < η, one has

d(α(y1, y2, t), α(y1, y2, t)) < ε for every t ∈ J.

(c)′′′ There is rα, 0 < rα ≤ +∞, such that, for every (y1, y2), (y1, y2) ∈ Y ×Y ,
with d(y1, y1) < rα, d(y2, y2) < rα, one has

d(α(y1, y2, t), α(y1, y2, t)) ≤ max{d(y1, y1), d(y2, y2)} for every t ∈ J.

Then Y , equipped with the mapping α, is called geodesically α-convex metric
space (resp. Lipschitz geodesically α-convex metric space).

In the above definitions, α is also called the convexity mapping, or α-mapping,
of Y .

Remark 3.5. The notion of geodesically α-convex space is similar to the
notion of geodesic structure, introduced by Michael in [23], where α is continuous
in t and satisfies some additional conditions which include (a), (b), and (c)′′. It
is worthwhile to observe that, from (c)′′ and the continuity of α in t, it follows
that α is actually continuous in (y1, y2, t), as required in Definition 3.4.

Remark 3.6. A normed space E (with norm ‖ · ‖) is Lipschitz α-convex,
and geodesically α-convex, if it is endowed with the natural convexity mapping
α0:E× E× J → E, given by

(3.3) α0(y1, y2, t) = (1− t)y1 + ty2.
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Clearly Λα0(y1, y2) = Λα0(y2, y1) = [y1, y2]. Thus we have

h(Λα(y1, y2),Λα(y1, y2)) ≤ max{‖y1 − y1‖, ‖y2 − y2‖}

for every (y1, y2), (y1, y2) ∈ E2.

Proposition 3.7.

(a1) Y is Lipschitz geodesically α-convex ⇒ Y is Lipschitz α-convex ⇒ Y is
strongly α-convex ⇒ Y is α-convex.

(a2) Y is geodesically α-convex ⇒ Y is α-convex.

Proof. (a1) is obvious.

(a2) With rα, ε, η, (y1, y2), (y1, y2) as in (c)
′′, and t ∈ J , one has

d(α(y1, y2, t),Λα(y1, y2)) ≤ max
s∈J
d(α(y1, y2, s), α(y1, y2, s)) < ε,

and hence e(Λα(y1, y2),Λα(y1, y2)) < ε. Combining this with the analogous
inequality obtained by interchanging Λα(y1, y2) and Λα(y1, y2), (3.2) follows,
and thus Y is α-convex. �

Proposition 3.8.

(a1) Let Y be an α-convex metric space, and let rα correspond. Then for
each 0 < ε < rα there exists 0 < η ≤ ε such that, if a ∈ Y and
y1, y2 ∈ U(a, η), then one has Λα(y1, y2) ⊂ U(a, ε).

(a2) Let Y be a strongly α-convex metric space, and let rα correspond. Then,
for every a ∈ Y and 0 < ε < rα, the set U(a, ε) is α-convex, hence
contractible.

Proof. (a1) Let y1, y2 ∈ U(a, η) and let η be as in Definition 3.1. Since
a = Λα(a, a), one has

sup
t∈J
d(α(y1, y2, t), a) = e(Λα(y1, y2),Λα(a, a)) = h(Λα(y1, y2),Λα(a, a)) < ε,

and (a1) holds. The above argument, with η = ε, proves also (a2). �

The following Example 3.9 (resp. Example 3.10) below shows that there
exist metric spaces Y which are α-convex (resp. Lipschitz α-convex) and not
geodesically α-convex (resp. Lipschitz geodesically α-convex).

Example 3.9. Let Y = R2, and let {(an, bn)}, {(an, bn)} ⊂ Y × Y be
sequences such that ‖an‖ = n, bn = an+ c, an = an+ c/n, bn = bn+ c/n, n ∈ N,
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where ‖c‖ = 1. Set

ϕ(a, b, t) =



0 if (a, b, t) ∈ D0 = {(a, b, t) ∈ Y × Y × J | t = 0},
1 if (a, b, t) ∈ D1 = {(a, b, t) ∈ Y × Y × J | t = 1},
t if (a, b, t) ∈ Sn = {(an, bn, t) ∈ Y × Y × J | t ∈ J}
for some n ∈ N,

t2 if (a, b, t) ∈ Tn = {(an, bn, t) ∈ Y × Y × J | t ∈ J}
for some n ∈ N.

Y is equipped with distance d induced by the Euclidean norm ‖ · ‖ of R2. As ϕ
is continuous on D0 ∪D1 ∪ (

⋃
n∈N(Sn ∪Tn)), a closed set, and takes values in J ,

by Tietze’s theorem [8, p. 149], it admits a continuous extension, say ϕ, defined
on Y × Y × J , with values in J .

Now define α:Y × Y × J → Y by

α(y1, y2, t) = (1− ϕ(y1, y2, t))y1 + ϕ(y1, y2, t)y2.

Clearly α is continuous, and satisfies conditions (a) and (b) of Definition 3.3.
Further, for arbitrary (y1, y2), (y1, y2) ∈ Y × Y , one has Λα(y1, y2) = [y1, y2],
Λα(y1, y2) = [y1, y2], and hence

h(Λα(y1, y2),Λα(y1, y2)) = h([y1, y2], [y1, y2]) ≤ max{‖y1 − y1‖, ‖y2 − y2‖}.

Thus Y is Lipschitz α-convex (with rα = ∞), and so α-convex. On the other
hand Y is not geodesically α-convex, since (c)′′ fails. In fact for any n ∈ N one
has

α(an, bn, t)− α(an, bn, t) = (1− t)an + tbn − (1− t2)an − t2bn
= (1− t)(an − an) + t(bn − bn) + (t− t2)(bn − an)

= − c
n
+ (t− t2)c.

Whence ‖α(an, bn, t) − α(an, bn, t)‖ ≥ t − t2 − 1/n, for each t ∈ J . For t = 1/2
and all n ≥ 8, it follows

‖α(an, bn, 1/2)− α(an, bn, 1/2)‖ ≥ 1/8,

which shows that (c)′′ fails, as d(an, an) = d(bn, bn) = 1/n.

Example 3.10. Set Y = {(u1, u2) ∈ R2|u1 ≤ 0 or u2 ≤ 0}, and equip Y
with metric d induced by the Euclidean norm ‖ · ‖ of R2. The non-negative
u1-axis, u2-axis of R2 are denoted by γ1, γ2. For u ∈ R2, u 6= 0, lu denotes the
line which contains 0 and is orthogonal to u. If λ′, λ′′ are non opposite half-lines
issuing from 0, by λ̂′λ′′ we mean the closed convex angle which is determined by
λ′, λ′′.



Approximate Selections and Topological Degree 355

For (p, q) ∈ Y 2, with p, q 6= 0, set T (p, q) = ‖p‖/(‖p‖ + ‖q‖). Clearly, for
every (p, q) ∈ Y 2, with [p, q] 6⊂ Y , we have p, q 6= 0, and hence 0 < T (p, q) < 1.
Now define α:Y × Y × J → Y (J = [0, 1]) by:

(p, q, t) = (1− t)p+ tq, t ∈ J, if [p, q] ⊂ Y,

α(p, q, t) =


(
1− t
T (p, q)

)
p t ∈ [0, T (p, q)],

t− T (p, q)
1− T (p, q)q t ∈ [T (p, q), 1],

if [p, q] 6⊂ Y.(3.4)

It will be shown that Y , endowed with the mapping α, is a Lipschitz α-convex
metric space (with rα =∞).
Since conditions (a), (b) of Definition 3.1 are trivially satisfied it suffices to

prove:

(j) α is continuous on Y × Y × J ;
(jj) for every (p, q), (p, q) ∈ Y 2, setting Λ = Λα(p, q), Λ = Λα(p, q), we have

(3.5) h(Λ,Λ) ≤ max{d(p, p), d(q, q)}.

Consider (j). Let (p, q, t) ∈ Y × Y × J , and let {(pn, qn, tn)} ⊂ Y × Y × J be
an arbitrary sequence converging to (p, q, t). In view of (3.4), α is continuous at
each point (p, q, t) with [p, q] 6⊂ Y .
Suppose [p, q] ⊂ Y , and let 0 ∈ (p, q) (the argument is similar if 0 /∈ (p, q)).

For some θ < 0 we have q = θp and thus, setting T = T (p, q), we have
T = 1/(1 + |θ|). Assume t < T . Let {[pnk , qnk ]} (resp. {[pmk , qmk ]}) be the
infinite subsequence, if exists, consisting of all [pn, qn] 6⊂ Y (resp. [pn, qn] ⊂ Y ).
Consider {[pnk , qnk ]}. Since tnk → t, Tnk → T , where Tnk = T (pnk , qnk), there
is k0 ∈ N such that tnk < Tnk for all k ≥ k0. By virtue of (3.4), we have
limk→∞ α(pnk , qnk , tnk) = α(p, q, t), because (1− t/T )p = (1− t− |θ|t)p = (1−
t)p+tq. Likewise, for {[pmk , qmk ]} we have limk→∞ α(pmk , qmk , tmk) = α(p, q, t),
and thus limn→∞ α(pn, qn, tn) = α(p, q, t). A similar reasoning shows that the
latter equality remains valid when t > T , or t = T . Whence (j) is true.
(jj) Let (p, q), (p, q) ∈ Y 2. Clearly (3.5) holds when Λ = [p, q], Λ = [p, q]. If

Λ = [0, p] ∪ [0, q], Λ = [0, p] ∪ [0, q], with [p, q] 6⊂ Y , [p, q] 6⊂ Y then (3.5) is satis-
fied, because h(Λ,Λ) ≤ max{h([0, p], [0, p]), h([0, q], [0, q])}, and h([0, p], [0, p]) ≤
d(p, p), h([0, q], [0, q]) ≤ d(q, q).
It remains to consider the cases:{

Λ = [p, q],

Λ = [0, p] ∪ [0, q], [p, q] 6⊂ Y
(a1)

{
Λ = [0, p] ∪ [0, q], [p, q] 6⊂ Y,
Λ = [p, q].

(a2)
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In (a1) (resp. (a2)) we assume, without loss of generality, 0 /∈ [p, q] (resp. 0 /∈
[p, q]) for, when 0 ∈ [p, q] (resp. 0 ∈ [p, q]), (3.5) follows at once if one writes
[p, q] = [0, p] ∪ [0, q] (resp. [p, q] = [0, p] ∪ [0, q]).

Claim. In either case (a1), (a2) we have

(3.6) {p, q} ∩ E(Λ) 6= φ, where E(Λ) = {e ∈ Λ | d(e,Λ) = max
x∈Λ
d(x,Λ)}.

Observe that, if Λ is compact convex, the corresponding distance function
d( · ,Λ) is convex (in general not strictly convex), and thus (3.6) is true, if also
Λ is compact convex.

Set Q1 = {(u1, u2) ∈ R2 | u1 > 0, u2 ≤ 0}, Q2 = {(u1, u2) ∈ R2 | u1 ≤
0, u2 > 0} and, for u ∈ Q1 ∪Q2, put λu = lu ∩ intY .
Let Λ, Λ be as in (a1), with 0 /∈ Λ. Since [p, q] 6⊂ Y , p and q are linearly

independent, and either p ∈ Q1 and q ∈ Q2, or p ∈ Q2 and q ∈ Q1. Clearly
int λ̂pλq 6= φ. Let p ∈ Q1, q ∈ Q2 (the proof is analogous in the other case).
For every x ∈ γ̂1λp we have d(x, [0, p]) ≤ ‖x‖ = d(x, [0, q]), where the equality
holds, since x and q make an angle greater or equal to π/2. Likewise we have
d(x, [0, p]) ≤ ‖x‖ = d(x, [0, p]) for every x ∈ γ̂2λq, and d(x, [0, p]) = ‖x‖ =
d(x, [0, q]) for every x ∈ λ̂pλq. Therefore,

(3.7) d(x,Λ) =


d(x, [0, p]) if x ∈ γ̂1λp,

d(x, [0, p]) = ‖x‖ = d(x, [0, q]) if x ∈ λ̂pλq,
d(x, [0, q]) if x ∈ γ̂2λq.

Put A1 = γ̂1λp ∪ λ̂pλq, A2 = γ̂2λq ∪ λ̂pλq. If Λ, which is compact convex,
satisfies Λ ⊂ A1 or Λ ⊂ A2, then (3.6) holds, in view of (3.7). Suppose Λ 6⊂ A1
and Λ 6⊂ A2, thus we have either p ∈ (γ̂2λq)\λq and q ∈ (γ̂1λp)\λp, or viceversa.
Since 0 /∈ Λ, it follows that Λ ∩ int λ̂pλq 6= φ. Consequently Λ = Λ1 ∪ Λ2, where
the segments Λ1 = Λ ∩ A1 and Λ2 = Λ ∩ A2 have intersection which is a non
degenerate segment. By (3.7) the function d( · ,Λ) restricted to Λ1, Λ2 is convex,
and thus it is actually convex also on Λ, proving (3.6).

Let Λ, Λ be as in (a2), with 0 /∈ Λ. Likewise in case (a1), suppose p ∈ Q1,
q ∈ Q2 (when p ∈ Q2, q ∈ Q1 the argument is similar). We have 0 /∈ E(Λ).
Suppose the contrary, i.e. d(0,Λ) = maxx∈Λ d(x,Λ), and let u ∈ Λ, be such that
‖u‖ = d(0,Λ). Let π be the closed half-plane containing u, determined by lu,
and set π′ = R2\π. Observe that Λ ⊂ u+π, otherwise, for some u′ ∈ Λ∩(u+π′),
we have ‖u′‖ < ‖u‖ = d(0,Λ).
Suppose u ∈ Y \ (Q1 ∪Q2). The points p, q cannot lie both in π, since this

implies [p, q] ⊂ π ⊂ Y , against the assumption. Then one of them lies in π′ and
so, for some x′ ∈ Λ∩π′ close enough to 0, we have d(x′,Λ) ≥ d(x′, u+π) > ‖u‖ =



Approximate Selections and Topological Degree 357

maxx∈Λ d(x,Λ), a contradiction. When u ∈ Q1∪Q2, an analogous contradiction
follows. Whence 0 /∈ E(Λ).
Now let e ∈ E(Λ). Suppose e ∈ [0, p] (if e ∈ [0, q] the argument is similar).

Since d(e,Λ) = maxx∈[0,p] d(x,Λ), we have {0, p} ∩ E(Λ) 6= φ. Thus p ∈ E(Λ),
for 0 /∈ E(Λ), showing that (3.6) holds also in case (a2).
In either case (a1), (a2), in view of (3.6), we have

max
x∈Λ
d(x,Λ) = max{d(p,Λ), d(q,Λ)} ≤ max{d(p, p), d(q, q)},

and hence e(Λ,Λ) ≤ max{d(p, p), d(q, q)}. By the Claim, the latter inequality
remains valid by interchanging Λ and Λ. Thus (3.5) holds, and also (jj) is proved.

Observe that the family of the α-convex subsets of Y contains, among other
sets, those of the form C ∩Y , where C is any convex subset of R2 containing the
origin. Moreover, each convex (in the usual sense) subset of Y is also α-convex,
but not conversely. For instance, the set which is the union of the triangles with
vertices (0, 0), (a, 0), (a,−a) and (0, 0), (0, a), (−a, a), a > 0, is α-convex but not
convex. Further, for each (p, q) ∈ Y 2, Λα(p, q) is convex and Λα(p, q) = Λα(q, p).

Remark 3.11. The space Y in Example 3.10 is Lipschitz α-convex, with
rα = ∞, but not Lipschitz geodesically α-convex. In fact, for n ∈ N, by
taking pn = (−1, 3)/n, qn = (3,−1)/n, pn = (4,−1)/n, qn = (8,−5)/n, we
have α(pn, qn, 1/2) = 0, α(pn, qn, 1/2) = (6,−3)/n, and hence d(α(pn, qn, 1/2),
α(pn, qn, 1/2)) =

√
45/n. Moreover, d(pn, pn) = d(qn, qn) =

√
41/n, and thus

d(α(pn, qn, 1/2), α(pn, qn, 1/2)) > max{d(pn, pn), d(qn, qn)},

for every n ∈ N. Since d(pn, pn), d(qn, qn) vanish as n→∞, it follows that there
is no rα > 0 for which condition (c)′′′ of Definition 3.4 is satisfied.

4. Pseudo-barycenters in α-convex metric spaces

In this section, the notion of pseudo-barycenter in an α-convex metric space
is introduced, and some of its properties are reviewed. Here we develop, in a
different direction, some ideas which go back Michael [23] and Curtis [6] (see also
Pasicki [26]).

Definition 4.1. A nonempty set A, contained in an α-convex metric space Y,
is called α-convex if, for every (y1, y2) ∈ A×A and t ∈ J , one has α(y1, y2, t) ∈ A.

Remark 4.2. The empty set is assumed to be α-convex. The intersection
of a family of α-convex subsets of Y is α-convex. Furthermore, if A ⊂ Y is
α-convex, also its closure A is so.
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Throughout Y stands for an α-convex metric space. Set:

Kα(Y ) = {A ∈ 2Y | A is compact and α-convex},
Cα(Y ) = {A ∈ 2Y | A is closed bounded and α-convex}.

The spaces Kα(Y ), Cα(Y ) are equipped with the Pompeiu–Hausdorff metric h.

Remark 4.3. Each singleton subset of Y is in Kα(Y ) hence in Cα(Y ). More-
over, each set A ∈ Cα(Y ) is contractible.
Put:

Y n = {(y1, . . . , yn) | yi ∈ Y, i = 1, . . . , n}, n ≥ 1,
Σn = {(λ1, . . . , λn) | 0 ≤ λi ≤ 1, i = 1, . . . , n, λ1 + . . .+ λn = 1}, n ≥ 1,
Σn0 = {(λ1, . . . , λn) | 0 ≤ λi ≤ 1,

i = 1, . . . , n− 1, 0 ≤ λn < 1, λ1 + . . .+ λn = 1} n ≥ 2.

If (y1, . . . , yn) ∈ Y n and (λ1, . . . , λn) ∈ Σn, we say that λi is the weight assigned
to yi, i = 1, . . . , n, or for brevity, that (λ1, . . . , λn) is the weight assigned to
(y1, . . . , yn).

For (y1, . . . , yn) ∈ Y n and (λ1, . . . , λn) ∈ Σn, we now define the correspond-
ing pseudo-barycenter bn(y1, . . . , yn;λ1, . . . , λn), an analogue of the usual notion
of barycenter in a normed space.

For y1 ∈ Y 1 and λ1 ∈ Σ1, i.e. λ1 = 1, put

(4.1) b1(y1, 1) = y1.

For (y1, y2) ∈ Y 2 and (λ1, λ2) ∈ Σ2, set

(4.2) b2(y1, y2;λ1, λ2) = α(y1, y2, λ2).

Clearly, the maps b1:Y × Σ1 → Y , b2:Y 2 × Σ2 → Y given by (4.1), (4.2) are
continuous on Y × Σ1, Y 2 × Σ2, respectively. Now suppose that bn−1:Y n−1 ×
Σn−1 → Y , for some n − 1 ≥ 2, has been constructed and that it is continuous
on Y n−1×Σn−1. We will define bn:Y n×Σn → Y and show that it is continuous
on Y n × Σn.
To this end, for (y1, . . . , yn) ∈ Y n and (λ1, . . . , λn) ∈ Σn0 , n ≥ 3, set

(4.3) b̃n(y1, . . . , yn;λ1, . . . , λn)

= α
(
bn−1

(
y1, . . . , yn−1;

λ1
1− λn

, . . . ,
λn−1
1− λn

)
, yn, λn

)
.

By the induction assumption the map b̃n:Y n × Σn0 → Y , given by (4.3), is
continuous on Y n × Σn0 . Further, setting p = (y1, . . . , yn;λ1, . . . , λn), p0 =
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(y01 , . . . , y
0
n; 0, . . . , 1), we have

(4.4) lim
p→p0

p∈Y n×Σn0

b̃n(y1, . . . , yn;λ1, . . . , λn) = y0n.

In the contrary case, there exists ε > 0 and a sequence {(yk1 , . . . , ykn;λk1 , . . . , λkn)}
⊂ Y n × Σn0 converging to (y01 , . . . , y0n; 0, . . . , 1), as k →∞, such that

(4.5) d(̃bn(yk1 , . . . , y
k
n;λ
k
1 , . . . , λ

k
n), y

0
n) ≥ ε for every k ∈ N.

Set ak = bn−1(yk1 , . . . , y
k
n−1;λ

k
1/(1− λkn), . . . , λkn−1/(1− λkn)). Since{(
λk1
1− λkn

, . . . ,
λkn−1
1− λkn

)}
⊂ Σn−1,

a compact set, passing to subsequences, without changing notation, we can as-
sume that there is (µ1, . . . , µn−1) ∈ Σn−1 such that(

yk1 , . . . , y
k
n−1;

λk1
1− λkn

, . . . ,
λkn−1
1− λkn

)
converges to (y01 , . . . , y

0
n−1;µ1, . . . , µn−1), as k → ∞. Since bn−1 is continuous

on Y n−1×Σn−1, one has that for k →∞, ak converges to a = bn−1(y01 , . . . , y0n−1;
µ1, . . . , µn−1). By the continuity of α, it follows that α(ak, ykn, λ

k
n) converges to

α(a, y0n, 1), when k → ∞. But α(ak, ykn, λkn) = b̃n(yk1 , . . . , ykn;λk1 , . . . , λkn) and
α(a, y0n, 1) = y

0
n, thus a contradiction to (4.5) follows, and (4.4) holds.

Define bn:Y n × Σn → Y by

(4.6) bn(y1, . . . , yn;λ1, . . . , λn)

=

{
b̃n(y1, . . . , yn;λ1, . . . , λn) if (λ1, . . . λn) ∈ Σn0 ,
yn if (λ1, . . . , λn) = (0, . . . , 1).

In view of (4.3) and (4.4), the function bn is continuous on Y n × Σn.

Definition 4.4. For (y1, . . . , yn) ∈ Y n and (λ1, . . . , λn) ∈ Σn, n ≥ 1,
the point bn(y1, . . . , yn; λ1, . . . , λn) given by (4.1) if n = 1, by (4.2) if n = 2,
and by (4.6) if n ≥ 3, is called pseudo-barycenter of (y1, . . . , yn) with weight
(λ1, . . . , λn).

By the previous argument one has:

Proposition 4.5. For each n ∈ N the pseudo-barycenter function bn:Y n ×
Σn → Y is continuous on Y n×Σn. Furthermore, bn(y0, . . . , y0;λ1, . . . , λn) = y0
for every y0 ∈ Y and (λ1, . . . , λn) ∈ Σn, and bn(y1, . . . , yn; 1, . . . , 0) = y1,
bn(y1, . . . , yn; 0, 1, . . . , 0) = y2, . . . , bn(y1, . . . , yn; 0, . . . , 1) = yn.

Remark 4.6. Let C ⊂ Y be α-convex. Then, for every (y1, . . . , yn) ∈ Cn

and (λ1, . . . , λn) ∈ Σn, n ∈ N, the pseudo-barycenter bn(y1, . . . , yn;λ1, . . . , λm)
lies in C.
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Remark 4.7. The pseudo-barycenter depends on the ordered n-tuple of
points (y1, . . . , yn) in the sense that, if (yi1 , . . . , yin) and (λi1 , . . . , λin) are ar-
bitrary permutations of (y1, . . . , yn) and (λ1, . . . , λn), it can happen that

bn(yi1 , . . . , yin ;λi1 , . . . , λin) 6= bn(y1, . . . , yn;λ1, . . . , λn).

Remark 4.8. Let E be a normed space equipped with its natural convexity
mapping α0 given by (3.3). In this case the α0-convex sets are the usual convex
sets, and we set

K(E) = Kα0(E), C(E) = Cα0(E).

Moreover, for each (y1, . . . , yn) ∈ En with weight (λ1, . . . , λn) ∈ Σn, the pseudo-
barycenter reduces to the barycenter, i.e.

bn(y1, . . . , yn;λ1, . . . , λn) = λ1y1 + . . .+ λnyn.

In view of Proposition 4.5 one has:

Proposition 4.9. Let (y1, . . . , yn) ∈ Y n, and let λi:M → [0, 1], i =
1, . . . , n, be n continuous functions defined on a metric space M , such that
λ1(x)+ . . .+λn(x) = 1 for every x ∈M . Then the function Φ:M → Y given by

Φ(x) = bn(y1, . . . , yn;λ1(x), . . . , λn(x))

is continuous.

Proposition 4.10. Let (y1, . . . , yn) ∈ Y n and (λ1, . . . , λn) ∈ Σn, n ≥ 2.
Let (i1, . . . , ik), 1 ≤ k ≤ n− 1, be a subset of (1, . . . , n) with i1 < . . . < ik, such
that

λi > 0 if i ∈ {i1, . . . , ik}, λi = 0 if i ∈ {1, . . . , n} \ {i1, . . . , ik}.

Then one has:

(4.7)n bn(y1, . . . , yn;λ1, . . . , λn) = bk(yi1 , . . . , yik ;λi1 , . . . , λik).

Proof. The statement is true for n = 2. If, for some n ≥ 3, (4.7)n−1 is true,
it will be proved that also (4.7)n is so. Let (λi1 , . . . , λik) be as in the statement.

Case 1. ik ≤ n− 1. Hence λn = 0, and thus

bn(y1, . . . , yn;λ1, . . . , λn) = α(bn−1(y1, . . . , yn−1;λ1, . . . , λn−1), yn, 0)

= bn−1(y1, . . . , yn−1;λ1, . . . , λn−1)

= bk(yi1 , . . . , yik ;λi1 , . . . , λik),

where the latter equality is obvious, if k = n − 1, while it follows from the
induction assumption, if 1 ≤ k ≤ n− 2. Therefore, if ik ≤ n− 1, (4.7)n is true.
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Case 2. ik = n. Thus, λn = λik > 0. If λik < 1, then k ≥ 2. We have

bn(y1, . . . , yn;λ1, . . . , λn)

= α
(
bn−1

(
y1, . . . , yn−1;

λ1
1− λn

, . . . ,
λn−1
1− λn

)
, yn, λn

)
.

As (λ1/(1−λn), . . . , λn−1/(1−λn)) ∈ Σn−1 and 1 ≤ k−1 ≤ n−1, the induction
hypothesis implies

bn−1

(
y1, . . . , yn−1;

λ1
1− λn

, . . . ,
λn−1
1− λn

)
= bk−1

(
yi1 , . . . , yik−1 ;

λi1
1− λik

, . . . ,
λik−1
1− λik

)
.

Whence,

(4.8) bn(y1, . . . , yn;λ1, . . . , λn)

= α
(
bk−1

(
yi1 , . . . , yik−1 ;

λi1
1− λik

, . . . ,
λik−1
1− λik

)
, yik , λik

)
= bk(yi1 , . . . , yik ;λi1 , . . . , λik).

If λik = 1, one has k = 1, for λ1 = . . . = λn−1 = 0, and thus

(4.9) bn(y1, . . . , yn;λ1, . . . , λn) = bn(y1, . . . , yn; 0, . . . , 1) = yn = b1(yi1 , 1).

In view of (4.8) and (4.9), (4.7)n is true, if ik = n. Hence in both Cases 1 and 2,
(4.7)n holds, completing the proof. �

Let Y be an α-convex metric space. Given an ordered n-tuple (y1, . . . , yn) ∈
Y n, n ≥ 2, the set Λα(y1, . . . , yn) given by

Λα(y1, . . . , yn) = {z ∈ Y | z = bn(y1, . . . , yn;λ1, . . . , λn)
for some (λ1, . . . , λn) ∈ Σn}.

we agree to call (y1, . . . , yn)-locus induced by bn,

Remark 4.11. For n = 2, the (y1, y2)-locus induced by b2 coincides with the
(y1, y2)-locus induced by α, given by (3.1). Clearly Λα(y1, . . . , yn) is a compact
set. Further, if (yi1 , . . . , yin) is an arbitrary permutation of (y1, . . . , yn), one can
have that Λα(yi1 , . . . , yin) 6= Λα(y1, . . . , yn).

The last statement of the following proposition is a kind of stability property
which is very useful in approximation problems for multifunctions.

Proposition 4.12. Let Y be an α-convex metric space, and let rα corre-
spond as in Definition 3.1. Then, for each 0 < ε < rα, there exists 0 < η ≤ ε
such that, for every (y1, . . . , yn), (z1, . . . , zn) ∈ Y n, n ≥ 2 arbitrary, with
d(yi, zi) < η, i = 1, . . . , n, one has

(4.10)n h(Λα(y1, . . . , yn),Λα(z1, . . . , zn)) < ε.
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Moreover, for every nonempty α-convex set C ⊂ Y , (y1, . . . , yn) ∈ Y n with
d(yi, C) < η, i = 1, . . . , n, and (λ1, . . . , λn) ∈ Σn, n ≥ 2, one has

d(bn(y1, . . . , yn;λ1, . . . , λn), C) < ε.

Proof. Let 0 < ε < rα, and let 0 < η ≤ ε be as in Definition 3.1.
To show (4.10)n is equivalent to prove that, for every (λ1, . . . , λn) ∈ Σn,

there exists (µ1, . . . , µn) ∈ Σn such that

(4.11)n d(bn(y1, . . . , yn;λ1, . . . , λn), bn(z1, . . . , zn;µ1, . . . , µn)) < ε,

and, furthermore, that the analogous inequality, obtained by interchanging the
roles of (λ1, . . . , λn) and (µ1, . . . , µn), holds as well.
It suffices to prove (4.11)n, as the proof of the other inequality is similar.
For n = 2, (4.11)n holds, by Definition 3.1. It will be shown that (4.11)n+1

is true provided that (4.11)n is so, for some n ≥ 2.
Let (y1, . . . , yn+1), (z1, . . . , zn+1) ∈ Y n+1, with d(yi, zi) < η, i = 1, . . . , n+1,

be given, and let (λ1, . . . , λn+1) ∈ Σn+1 be arbitrary.
Let 0 ≤ λn+1 < 1. Setting

cn = bn(y1, . . . , yn;λ1/(1− λn+1), . . . , λn/(1− λn+1)),

one has

(4.12) bn+1(y1, . . . , yn+1;λ1, . . . , λn+1) = α(cn, yn+1, λn+1).

Since cn ∈ Λα(y1, . . . , yn), by the induction hypothesis there is a point en =
bn(z1, . . . , zn; θ1, . . . , θn), for some (θ1, . . . , θn) ∈ Σn, such that d(cn, en) < ε.
From this and the hypothesis d(yn+1, zn+1) < η, in view of Definition 3.1(c), one
has h(Λα(cn, yn+1),Λα(en, zn+1))<ε. Further, α(cn, yn+1, λn+1)∈Λα(cn, yn+1)
and thus there exists 0 ≤ ρ ≤ 1 such that

(4.13) d(α(cn, yn+1, λn+1), α(en, zn+1, ρ)) < ε.

As α(en, zn+1, · ) is continuous, without loss of generality, one can assume that
ρ < 1. Put now (µ1, . . . , µn+1) = ((1− ρ)θ1, . . . , (1− ρ)θn, ρ), and observe that
(µ1, . . . , µn+1) ∈ Σn+1. Since

µn+1 < 1 and (µ1/(1− µn+1), . . . , µn/(1− µn+1)) = (θ1, . . . , θn),

one has

α

(
bn

(
z1, . . . , zn;

µ1
1− µn+1

, . . . ,
µn

1− µn+1

)
, zn+1, µn+1

)
= α(en, zn+1, ρ),

that is,

(4.14) bn+1(z1, . . . , zn+1;µ1, . . . , µn+1) = α(en, zn+1, ρ).
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Combining (4.13) with (4.12) and (4.14) gives

(4.15) d(bn+1(y1, . . . , yn+1;λ1, . . . , λn+1),

bn+1(z1, . . . , zn+1;µ1, . . . , µn+1)) < ε.

Let λn+1 = 1. Clearly, (λ1, . . . , λn+1) = (0, . . . , 1). Thus, by taking
(µ1, . . . , µn+1) = (0, . . . , 1), (4.15) follows trivially, as the left hand side equals
d(yn+1, zn+1) and so it is strictly less than η ≤ ε. Therefore (4.11)n holds for
every n ≥ 2.
The second statement follows from the previous one and the α-convexity

of C. This completes the proof. �

Remark 4.13. Let (y1, . . . , yn+1) ∈ Y n+1, where yk = yk+1 for some 1 ≤
k ≤ n, and let (λ1, . . . , λn+1) ∈ Σn+1 be arbitrary. Unlike the barycenter, for
the pseudo-barycenter it can happen that bn+1(y1, . . . , yn+1; λ1, . . . , λn+1) 6=
bn(y1, . . . , yk, yk+2, . . . , yn+1; λ1, . . . , λk + λk+1, λk+2, . . . , λn+1).

Remark 4.14. The definition of pseudo-barycenter and some of its prop-
erties, including Proposition 4.5, 4.9 and 4.10, remain valid if in Definition 3.1
the continuous mapping a:Y × Y × J → Y satisfies only conditions (a), (b).
Condition (c) plays a crucial role in the proof of Proposition 4.12.

Proposition 4.15 (Dugundji [8, p. 83]). Let X, Z be topological spaces. Let
{Aλ}λ∈Λ be a covering of X, where the sets Aλ ⊂ X are open, and let {ϕλ}λ∈Λ
be a family of continuous functions ϕλ:Aλ → Z such that for every λ, µ ∈ Λ,
with Aλ ∩Aµ 6= φ,

ϕλ(x) = ϕµ(x) for every x ∈ Aλ ∩Aµ.

Then, there is a unique continuous function f :X → Z, which is an extension of
each ϕλ, that is, for each λ ∈ Λ,

f(x) = ϕλ(x) for every x ∈ Aλ.

5. Approximate selections

In this section we present an α-convex version of an approximate selection
theorem established by Cellina [3] in linear spaces.
The support of a map f :M → R,M a metric space, is the closed set supp f =

{x ∈M | f(x) 6= 0}.

Proposition 5.1. Let M be a metric space, Y an α-convex metric space,
C an α-convex subset of Y . Let F :M → Cα(Y ) be a Pompeiu–Hausdorff upper
semicontinuous multifunction such that F (x) ⊂ C, for every x ∈ M . Then, for
each ε > 0, there exists a continuous function fε:M → C such that

(5.1) e(graph fε, graphF ) ≤ ε.
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Proof. Let 0 < ε < rα, where rα is as in Definition 3.1. By Proposition 4.12
there exists 0 < η ≤ ε such that, for every nonempty α-convex set C ⊂ Y ,
(y1, . . . , yn) ∈ Y n, with d(yi, C) < η, i = 1, . . . , n, and (λ1, . . . , λn) ∈ Σn, n ≥ 1
arbitrary, one has

(5.2) d(bn(y1, . . . , yn;λ1, . . . , λn), C) < ε.

Since F is h-u.s.c. for every x ∈M there exists a σ(x), with

(5.3) 0 < σ(x) < η,

such that

(5.4) x′ ∈ U(x, σ(x)) implies e(F (x′), F (x)) < η.

Arguing as in Hu and Papageorgiou in [16, Theorem 4.11, p. 106], consider
the family U = {U(x, σ(x)/4)}x∈M . U is an open covering of M , a paracompact
space, and thus it admits an open neighbourhood finite refinement V = {Vβ}β∈B .
For every Vβ ∈ V, the set

F(Vβ) = {U(x, σ(x)/4) | Vβ ⊂ U(x, σ(x)/4)}

is nonempty. In each F(Vβ) fix one set, say U(xβ , σ(xβ)/4). Furthermore, with
each Vβ ∈ V, associate a point (uβ , yβ) ∈M × Y , where

(5.5) uβ ∈ Vβ and yβ ∈ F (uβ).

In view of Dugundji [8, p. 170], there is a partition {pVβ}β∈B of unity subordi-
nated to V, i.e. a family of continuous functions pVβ :M → [0, 1] such that:

(j) supp pVβ ⊂ Vβ for every β ∈ B,
(jj) {supp pVβ}β∈B is a neighbourhood finite closed covering of M ,
(jjj)
∑
β∈B pVβ (x) = 1 for every x ∈M .

By Zermelo’s theorem [8, p. 31], V admits a partial ordering ≺ which makes
V into a well ordered set. In the sequel V is assumed to be equipped with the
well ordering ≺.
Let u ∈ M be arbitrary. Since V is neighbourhood finite, there exists an

open neighbourhood Wu of u such that the family

VWu = {Vβ ∈ V | Vβ ∩Wu 6= φ}

is nonempty and finite, say

VWu = (Vβ1 , . . . , Vβk) where Vβ1 ≺ . . . ≺ Vβk ,

for some k ≥ 1. Let (uβ1 , . . . , uβk), (yβ1 , . . . , yβk) and (U(xβ1 , σ(xβ1)/4), . . . ,
U(xβk , σ(xβk)/4)) correspond. For x ∈Wu, set

ϕWu(x) = bk(yβ1 , . . . , yβk ; pVβ1 (x), . . . , pVβk (x)).
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Clearly ϕWu(x) ∈ C, thus the above equality defines a mapping ϕWu :Wu → C
which is continuous on Wu, in view of Proposition 4.9. It will be shown that

(5.6) e(graphϕWu , graphF ) < ε.

To this end, let x ∈ Wu be arbitrary. The set VxWu of all Vβ ∈ V such that
pVβ (x) > 0 is a nonempty subset of VWu , for x ∈ supp pVβ ⊂ Vβ . Hence for some
1 ≤ p ≤ k and 1 ≤ i1 < . . . < ip ≤ k, one has

(5.7) VxWu = (Vβi1 , . . . , Vβip ) where Vβi1 ≺ . . . ≺ Vβip ,

and thus Proposition 4.10 implies

(5.8) ϕWu(x) = bp(yβi1 , . . . , yβip ; pVβi1 (x), . . . , pVβip (x)).

Clearly,

(5.9) x ∈ supp pVβis ⊂ Vβis ⊂ U(xβis , σ(xβis )/4), s = 1, . . . , p.

Set σ(xβim ) = max{σ(xβis ) | s = 1, . . . , p}, for some 1 ≤ m ≤ p. In view
of (5.9), one has

d(xβis , xβim ) ≤ d(xβis , x) + d(x, xβim )(5.10)

<
1
4
σ(xβis ) +

1
4
σ(xβim ) ≤

1
2
σ(xβim ),

for s = 1, . . . , p. Whence,

(5.11) Vβis ⊂ U(xβis , σ(xβis )/4) ⊂ U(xβim , σ(xβim ))

for s = 1, . . . , p, if z ∈ U(xβis , σ(xβis )/4), by virtue of (5.10) one has

d(z, xβim ) ≤ d(z, xβis ) + d(xβis , xβim ) <
1
4
σ(xβis ) +

1
2
σ(xβim ) < σ(xβim ).

From (5.11) it follows that uβis ∈ U(xβim , σ(xβim )), for uβis ∈ Vβis . Then
e(F (uβis ), F (xβim )) < η, by (5.4), and a fortiori

d(yβis , F (xβim )) < η, s = 1, . . . , p,

for yβis ∈ F (uβis ). In view of (5.2), one has

d(bp(yβi1 , . . . , yβip ; pVβi1 (x), . . . , pVβip (x)), F (xβim )) < ε

and, by (5.8),

(5.12) d(ϕWu(x), F (xβim )) < ε.

On the other hand x ∈ supp pVβis , and thus (5.11) yields x ∈ U(xβim , σ(xβim )).
By (5.3), σ(xβim ) < η ≤ ε, and hence

(5.13) d(x, xβim ) < ε.

From (5.12) and (5.13), since x ∈Wu is arbitrary, (5.6) follows.
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Now define fε:M → C by

fε(x) = ϕWu(x) if x ∈Wu for some u ∈M.

The family {Wu}u∈M is an open covering of M . The above definition is mean-
ingful if one shows that, for every Wu, Wu′ , u, u′ ∈M , with Wu ∩Wu′ 6= φ, one
has

(5.14) ϕWu(x) = ϕWu′ (x) for every x ∈Wu ∩Wu′ .

In fact, let x ∈Wu ∩Wu′ . Clearly

VxWu = {Vβ ∈ VWu | pVβ (x) > 0} = {Vβ ∈ VWu′ | pVβ (x) > 0} = V
x
Wu′
.

Whence, in view of (5.7) one has VxWu′ = V
x
Wu
= (Vβi1 , . . . , Vβip ), where Vβi1 ≺

. . . ≺ Vβip . Therefore, if uβis ∈ Vβis and yβis ∈ F (uβis ) correspond to Vβis ,
s = 1, . . . , p, according (5.5), by Proposition 4.10 one has

ϕWu(x) = bp(yβ1 , . . . , yβp ; pVβ1 (x), . . . , pVβp (x)) = ϕWu′ (x),

and thus (5.14) follows, as x ∈ Wu ∩Wu′ is arbitrary. Since each ϕWu is con-
tinuous, also fε is so, by Proposition 4.15. Furthermore, in view of (5.6), fε
satisfies (5.1). This completes the proof. �

Corollary 5.2. Let M be a metric space, Y an α-convex metric space, C
a compact α-convex subset of Y . Let F :M → Kα(Y ) be a h-u.s.c. multifunction
such that F (x) ⊂ C, for every x ∈ M . Then, for each ε > 0, there exists a
continuous and compact function fε:M → C such that

(5.15) e(graph fε, graphF ) < ε.

Remark 5.3. Proposition 5.1 and Corollary 5.2 remain valid for multifunc-
tions with α-convex bounded values, as one can easily see from the above proofs.

Corollary 5.4. Let M be a metric space, and E a Banach space.

(a) If F :M → C(E) is h-u.s.c. multifunction, then, for each ε > 0 there
exists a continuous function fε:M → E which satisfies (5.15).

(b) If F :M → K(E) is a h-u.s.c. multifunction with precompact range R =⋃
x∈M F (x) then, for each ε > 0, there exists a continuous and compact
function fε:M → E satisfying (5.15), with values fε(x) ∈ coR, for
every x ∈M .

Proof. (a) follows from Proposition 5.1 and Remark 4.7. (b) follows from
Corollary 5.2, by taking C = coR, a convex compact set by Mazur’s theorem.
The following proposition is known yet, for the sake of completeness, the

proof is included. �
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Proposition 5.5. Let M be a metric space, and Y an α-convex metric
space. Let F :M → Cα(Y ) be h-u.s.c. and let {fn} be a sequence of continuous
functions fn:M → Y such that fn

gr−→ F as n→∞. If xn → x and fn(xn)→ y
as n→∞, then one has y ∈ F (x).

Proof. Let ε > 0, and denote by d, d1, ρ the metric of M , Y , M × Y ,
respectively. Take n0 ∈ N so that n ≥ n0 implies

ρ((z, fn(z)), graphF ) ≤ e(graph fn, graphF ) < ε/2 for every z ∈M.

Thus, for each n ≥ n0, there exists (ξn, ηn), where ξn ∈M and ηn ∈ F (ξn), such
that ρ((xn, fn(xn)), (ξn, ηn)) < ε/2. Whence,

d(xn, ξn) < ε/2, d1(fn(xn), ηn) < ε/2 for every n ≥ n0.

Since xn → x and fn(xn)→ y, as n→∞, for n large enough, say n ≥ n1 ≥ n0,
one has

d(ξn, x) ≤ d(ξn, xn) + d(xn, x) < ε/2 + ε/2 = ε
d1(ηn, y) ≤ d1(ηn, fn(xn)) + d1(fn(xn), y) < ε/2 + ε/2 = ε.

Consequently (ξn, ηn) → (x, y), as n → ∞. Since ηn ∈ F (ξn), and F is h-u.s.c.
with closed values, letting n→∞ gives y ∈ F (x), completing the proof. �

6. Topological degree

In this section we use the approximate continuous selection result established
in Section 5 in order to define the topological degree for a class of multifunctions
with α-convex values. When the values are convex, this reduces to the topological
degree defined by Hukuhara in [17] and Cellina and Lasota in [4].
Throughout E is a real Banach space, D a nonempty open bounded subset

of E, and p a point of E. I is the identity mapping on E, and O the origin of E.
Furthermore, Y is a closed subset of E containing O, equipped with a con-

vexity mapping α:Y × Y × J → Y , i.e. Y is an α-convex metric space in the
sense of Definition 3.1.
Denote by F(D,Kα(Y )) the set of all multifunctions F :D → Kα(Y ) such

that:

(j) F is h-u.s.c.
(jj) F is compact, i.e. there is a compact α-convex set A ⊂ Y (A depending
on F ) such that F (x) ⊂ A, for every x ∈ D.

Occasionally, the set A in (jj) corresponding to F is denoted by AF .

Remark 6.1. Since O ∈ Y and, by Remark 4.3, Kα(Y ) contains all singleton
subsets of Y , it follows that the mapping Θ defined by Θ(x) = {0}, for every
x ∈ D, is an element of F(D,Kα(Y )) and, obviously, of F(D,K(E)).
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For F ∈ F(D,Kα(Y )), put:

AF (D,A) = {{fn} | fn:D → A is continuous compact, fn
gr−→ F},

where {fn} stands for {fn}∞n=1. By Corollary 5.2, one has:

Proposition 6.2. AF (D,A) is nonempty, for every F ∈ F(D,Kα(Y )).

Definition 6.3. Let F ∈ F(D,Kα(Y )), and let p /∈
⋃
x∈∂D(I − F )(x). Let

{fn} ∈ AF (D,A). The topological degree Deg(I −F,D, p) of I −F at p relative
to D is defined by

(6.1) Deg(I − F,D, p) = lim
n→∞
deg(I − fn, D, p),

where deg(I − fn, D, p) denotes the Leray–Schauder topological degree of I − fn
at p relative to D.

In the sequel we shall use some properties of the Leray–Schauder topological
degree, that can be found in Istrǎtescu [18] and Llyod [20].
The above definition is meaningful by virtue of the following proposition.

Proposition 6.4. Let F ∈ F(D,Kα(Y )), and let p /∈
⋃
x∈∂D(I − F )(x).

Let {fn}, {gn} ∈ AF (D,A). Then one has
(a) There exists n0 ∈ N such that

(6.2) deg(I − fn, D, p) = deg(I − fm, D, p) for all n,m ≥ n0.

(b) There exists n0 ∈ N such that

(6.3) deg(I − fn, D, p) = deg(I − gn, D, p) for all n ≥ n0.

Proof. By Proposition 6.2, the set AF (D,A) is nonempty.
(b) Let {fn} ∈ AF (D,A). Define Hn,m:D × [0, 1]→ Y by

Hn,m(x, t) = α(fn(x), fm(x), t).

Clearly Hn,m is well defined, continuous and compact.
There is n0 ∈ N such that

(6.4) p /∈
⋃

n,m≥n0

⋃
(x,t)∈∂D×[0,1]

(x−Hn,m(x, t)).

Supposing the contrary, there exist subequences {nk}, {mk} ⊂ N and a sequence
{(xk, tk)} ⊂ ∂D × [0, 1], such that

(6.5) p = xk − α(fnk(xk), fmk(xk), tk) for every k ∈ N.

Hence, for all k ∈ N, one has xk ∈ p+α(A,A, [0, 1]), where the latter is a compact
set, since A and [0, 1] are so, and α is continuous. Passing to subsequences,
without changing notation, for some t ∈ [0, 1], x ∈ ∂D, and y, z ∈ A one has
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tk → t, xk → x, fnk(xk) → y, and fmk(xk) → z, as k → ∞. Since F is h-u.s.c.
with compact α-convex values, Proposition 5.5 implies that y, z ∈ F (x), and
hence α(y, z, t) ∈ F (x). From (6.5), letting k → ∞, one has p = x − α(y, z, t),
and thus p ∈ x− F (x). This contradicts the hypothesis, consequently, for some
n0 ∈ N, (6.5) holds.
For n, m ≥ n0 each Hn,m is continuous compact and satisfies (6.4).
Whence, by the homotopy property of the Leray–Schauder degree, (6.2) fol-

lows and (a) is proved.

(b) Let {fn}, {gn} ∈ AF (D,A). Define Hn:D × [0, 1]→ Y by

Hn(x, t) = α(fn(x), gn(x), t).

Hn is well defined continuous and compact. There exists n0 ∈ N such that

(6.6) p /∈
⋃
n≥n0

⋃
(x,t)∈∂D×[0,1]

(x−Hn(x, t)).

In the contrary case, there exist a subsequence {nk} ⊂ N and a sequence
{(xk, tk)} ⊂ ∂D × [0, 1], such that

(6.7) p = xk − α(fnk(xk), gnk(xk), tk) for every k ∈ N.

As before, passing to subsequences, without changing notation, for some t ∈
[0, 1], x ∈ ∂D, and y, z ∈ A, one has tk → k, xk → x, fnk(xk) → y, and
gnk(xk) → z, when k → ∞, and hence α(y, z, t) ∈ F (x). Letting k → ∞,
(6.7) gives p = x − α(y, z, t), and thus p ∈ x − F (x). Since this contradicts the
hypothesis, there exists n0 ∈ N for which (6.6) holds.
For n ≥ n0 each Hn is continuous compact and satisfies (6.6). Hence (6.3)

follows, proving (b). �

Proposition 6.5. Let F ∈ F(D,Kα(Y )) and let p /∈
⋃
x∈∂D(I − F )(x).

Then, the topological degree Deg(I − F,D, p) of I − F at p relative to D is well
defined.

Proof. By Proposition 6.2, the set AF (D,A) is nonempty. Furthermore,
by Proposition 6.4, the limit (6.1) exists and it is independent of the sequence
{fn} ∈ AF (D,A). �

Remark 6.6. If F ∈ F(D,K(E)) and p /∈
⋃
x∈∂D(I − F )(x), then Deg(I −

F,D, p) reduces to the topological degree of I − F at p relative to D defined
by Hukuhara in [17] and, in particular, to Leray–Schauder’s degree, when F is
single valued.
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7. Properties of the topological degree

In this section, we present a few properties of the topological degree intro-
duced before, including an application to fixed point theory.

Throughout E and Y are as in Section 6. Furthermore, D is a nonempty
open bounded subset of E, and p a point of E.

Proposition 7.1 (Invariance under homotopy). Let F1, F2 ∈ F(D,Kα(Y )),
and suppose that the multifunction H:D × [0, 1]→ 2Y given by

H(x, t) = α(F1(x), F2(x), t)

is such that p /∈
⋃
(x,t)∈∂D×[0,1](x−H(x, t)). Then, one has

(7.1) Deg(I − F1, D, p) = Deg(I − F2, D, p).

Proof. Let {f1n} ∈ AF1(D,A1), {f2n} ∈ AF2(D,A2), where A1, A2 ⊂ Y are
compact α-convex sets corresponding to F1, F2, respectively. Define Kn:D ×
[0, 1]→ Y by

(7.2) Kn(x, t) = α(f1n(x), f
2
n(x), t).

Kn is well defined continuous and compact.

There exists n0 ∈ N such that

(7.3) p /∈
⋃
n≥n0

⋃
(x,t)∈∂D×[0,1]

(x−Kn(x, t)).

Supposing the contrary, there exist subsequences {f1nk}, {f
2
nk
} and a sequence

{(xk, tk)} ⊂ ∂D × [0, 1], such that

(7.4) p = xk − α(f1nk(xk), f
2
nk
(xk), tk) for every k ∈ N.

As {f1nk(xk)} ⊂ A1, {f
2
nk
(xk)} ⊂ A2, {xk} ⊂ p + α(A1, A2, [0, 1]), and {tk} ⊂

[0, 1], passing to subsequences, whithout changing notation, for some x ∈ ∂D,
y1 ∈ A1, y2 ∈ A2, and t ∈ [0, 1], one has xk → x, f1nk(xk) → y1, f

2
nk
(xk) → y2,

tk → t, when k →∞. Furthermore, y1 ∈ F1(x), y2 ∈ F2(x), by Proposition 5.5.
Letting k → ∞, (7.4) gives p = x − α(y1, y2, t), and thus p ∈ x − H(x, t),
a contradiction. Therefore, for some n0 ∈ N, (7.3) holds.
By the homotopy property of the Leray–Schauder degree, in view of (7.2)

and (7.3), one has

deg(I − f1n, D, p) = deg(I − f2n, D, p) for all n ≥ n0.

Hence, letting n→∞, (7.1) follows, completing the proof. �
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Proposition 7.2 (Inclusions solving property). Let F ∈ F(D,Kα(Y )), let
p /∈
⋃
x∈∂D(I −F )(x), and suppose that Deg(I −F,D, p) 6= 0. Then, there exists

x ∈ D such that

(7.5) p ∈ x− F (x).

Proof. Let {fn} ∈ AF (D,A). By Definition 6.3 and Proposition 6.4(a),
there is n0 ∈ N such that n ≥ n0 implies deg(I − fn, D, p) = Deg(I − F,D, p).
The latter is non zero, hence by a property of the Leray–Schauder degree, for
each n ≥ n0 there exists xn ∈ D such that

(7.6) p = xn − fn(xn).

Since {fn(xn)} ⊂ A, a compact set, passing to subsequences, without changing
notation, one can assume that xn → x, fn(xn)→ y, as n→∞, for some x ∈ D
and y ∈ A. Furthermore y ∈ F (x), by Proposition 5.5. Then from (7.6), letting
n→∞, (7.5) follows and, clearly, x ∈ D. This completes the proof. �

Proposition 7.3 (Normalization). If p ∈ D then Deg(I −Θ, D, p) = 1.

Proof. Since Θ ∈ F(D,Kα(Y )), by Remark 6.1, Deg(I−Θ, D, p) is defined.
By Remark 6.6, Deg(I −Θ, D, p) = deg(I −Θ, D, p) and, as the latter is 1, the
statement follows. �

Proposition 7.4 (Continuity in p). Let F ∈ F(D,Kα(Y )), and let p, q ∈ C,
where C is an open component of E \

⋃
x∈∂D(I − F )(x). Then one has:

(7.7) Deg(I − F,D, p) = Deg(I − F,D, q).

Proof. Let {fn} ∈ AF (D,A). Let γ: [0, 1] → C be a continuous path
joining p and q. For ε > 0 put

Γε =
⋃
t∈[0,1]

U(γ(t), ε),

where U(γ(t), ε) denotes the open ball in E with center γ(t) and radius ε > 0.
Γε is open connected and Γε ⊂ C, if ε is small enough, say ε < ε0.
There exist 0 < ε < ε0 and n0 ∈ N such that

(7.8) Γε ⊂ E \
( ⋃
n≥n0

⋃
x∈∂D

(I − fn)(x)
)
.

In the contrary case, there exist a subsequence {fnk} and sequences {xk} ⊂ ∂D,
{tk} ⊂ [0, 1], such that

(7.9) γ(tk) ∈ xk − fnk(xk) +
1
k
U for every k ∈ N,
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where U stands for the open unit ball in E. Since {γ(tk)} ⊂ γ([0, 1]), {fnk(xk)} ⊂
A, and γ([0, 1]), A are compact, passing to subsequences, without changing no-
tation, one has γ(tk) → z, fnk(xk) → y, xk → x, for some z ∈ γ([0, 1]), y ∈ A,
and x ∈ ∂D. Furthermore y ∈ F (x), by Proposition 5.5. Letting k → ∞, (7.9)
gives z = x − y ∈ x − F (x). As z ∈ γ([0, 1]) ⊂ C and x ∈ ∂D, a contradiction
follows and thus, for some 0 < ε < ε0 and n0 ∈ N, (7.8) holds.
Since Γε is open connected, contains p and q, and satisfies (7.8), by a property

of the Leray–Schauder degree one has deg(I − fn, D, p) = deg(I − fn, D, q), for
every n ≥ n0. Letting n→∞, (7.7) follows, completing the proof. �

Proposition 7.5. Let D be a nonempty open bounded subset of E, with
0 ∈ D ⊂ Y . Suppose D is α-convex. Let F :D → Kα(Y ) be a h-u.s.c. and
compact multifunction with corresponding set AF ⊂ D. Then F has a fixed
point.

Proof. From the hypothesis, F,Θ∈F(D,Kα(Y )). Define H:D×[0, 1]→ 2Y

by

(7.10) H(x, t) = α(0, F (x), t).

We have

(7.11) 0 /∈
⋃

(x,t)∈∂D×[0,1]

(x−H(x, t)).

In the contrary case, there are x ∈ ∂D and t ∈ [0, 1] such that x ∈ α(0, F (x), t),
and thus x = α(0, y, t), for some y ∈ F (x). Since 0 ∈ D and F (x) ⊂ A ⊂ D,
where D is α-convex, one has α(0, y, t) ∈ D and, from the contradiction, (7.11)
follows.

In view of (7.11), Proposition 7.1 gives Deg(I − F,D, 0) = Deg(I −Θ, D, 0),
where the latter is 1, by Proposition 7.3. Whence, by Proposition 7.2, x ∈ F (x)
for some x ∈ D, completing the proof. �

Definition 7.6. Let C be a nonempty open bounded subset of E with
C ⊂ Y . Suppose C is α-convex. A point a ∈ C is called absorbing for C if
α(a, y, t) ∈ C for all y ∈ C and t ∈ [0, 1).

Remark 7.7. Suppose E is equipped with the (natural) convexity mapping
α0 given by (3.3), and let C be a nonempty open bounded convex subset of E.
Then, each point a ∈ C is absorbing for C. This is no longer true if convexity is
replaced by α-convexity.

Proposition 7.8. Let D be a nonempty open bounded subset of E, with
0 ∈ D ⊂ Y . Suppose that D is α-convex, and that 0 is an absorbing point of D.
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Let F :D → Kα(Y ) be a h-u.s.c. and compact multifunction, with corresponding
set AF ⊂ D. Then, F has a fixed point.

Proof. Without loss of generality, one can assume

(7.12) 0 /∈
⋃
x∈∂D

(I − F )(x).

Now, let H:D × [0, 1] → 2Y be given by (7.10), and observe that F , Θ ∈
F(D,Kα(Y )).
Under the above assumptions, (7.11) holds. In the contrary case, there are

x ∈ ∂D and t ∈ [0, 1] such that x ∈ α(0, F (x), t). The cases t = 0, t = 1 imply
respectively x = 0, x ∈ F (x), which are excluded by the assumptions 0 ∈ D, and
(7.12). Whence x = α(0, y, t), for some 0 < t < 1 and y ∈ F (x). Since y ∈ D
and 0 is absorbing for D, one has α(0, y, t) ∈ D. As x ∈ ∂D, a contradiction
follows, and so (7.11) holds. In view of (7.11), one can conclude as in the proof
of Proposition 7.5. �

Remark 7.9. If, in Proposition 7.8, one takes Y = E, with the natural
convexity mapping α0, and assumes 0 ∈ D, then the classical fixed point theorem
of Kakutani–Ky Fan (see [19] and [9]) follows at once.

Proposition 7.10. Let Y be a compact α-convex metric space. Then, every
h-u.s.c. multifunction F :Y → Kα(Y ) has a fixed point.

Proof. By Corollary 5.2, there exists a sequence {fn} of continuous func-
tions fn:Y → Y such that fn

gr−→ F , as n → ∞. By [7, Corollary 3.3], each
fn has a fixed point xn = fn(xn). Since Y is compact, passing to subsequences
(without changing notation), one can assume that xn → x and fn(xn) → x as
n→∞, for some x ∈ Y . Then, by Proposition 5.5, one has x ∈ F (x), completing
the proof. �
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