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EXISTENCE OF POSITIVE SOLUTIONS TO SYSTEMS
OF NONLINEAR INTEGRAL OR DIFFERENTIAL EQUATIONS

Xiyou Cheng — Zhitao Zhang

Abstract. In this paper, we are concerned with existence of positive so-

lutions for systems of nonlinear Hammerstein integral equations, in which
one nonlinear term is superlinear and the other is sublinear. The discus-

sion is based on the product formula of fixed point index on product cone

and fixed point index theory in cones. As applications, we consider exis-
tence of positive solutions for systems of second-order ordinary differential

equations with different boundary conditions.

1. Introduction

In this paper, we consider existence of positive solutions for the following
system of nonlinear Hammerstein integral equations

(S)


u(x) =

∫
Ω

k1(x, y)f1(y, u(y), v(y)) dy for x ∈ Ω,

v(x) =
∫

Ω

k2(x, y)f2(y, u(y), v(y)) dy for x ∈ Ω,

where Ω ⊂ Rn is a bounded domain, ki ∈ C(Ω×Ω,R+), fi ∈ C(Ω×R+×R+,R+)
(i = 1, 2) and R+ = [0,∞).
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Definition 1.1. Let C+(Ω) = {u ∈ C(Ω) | u(x) ≥ 0, for all x ∈ Ω}, we
say that (u, v) is one positive solution, if (u, v) ∈ [C+(Ω) \ {θ}]× [C+(Ω) \ {θ}]
satisfies system (S).

The study of nonlinear Hammerstein integral equations was initiated by
Hammerstein, see [4]. Subsequently a number of papers have dealt with ex-
istence of nontrivial solutions of nonlinear Hammerstein integral equations, see
the monographs [3], [5] and the references therein. To the best of our knowledge,
the papers dealing with existence of nontrivial solutions, especially positive so-
lutions for system (S) are few, see [7]–[10]. They mainly studied existence of
nontrivial or nonnegative solutions for systems of nonlinear Hammerstein in-
tegral equations by use of topological methods or fixed point index theory in
cones.

Recently, in [1] Cheng and Zhong considered existence of positive solutions
for a super-sublinear system of second-order ordinary differential equations by
applying the product formula of fixed point index on product cone and fixed point
index theory in cones. Motivated by these works, we shall deal with existence of
positive solutions for system (S), in which one nonlinear term is superlinear and
the other is sublinear. As applications, we consider existence of positive solutions
to systems of second-order ordinary differential equations with superlinear and
sublinear nonlinearities under different boundary conditions.

Throughout this paper, we suppose that kernel functions ki(x, y) (i = 1, 2)
satisfy the following conditions:

(i) ki(x, y) = ki(y, x), for all x, y ∈ Ω;
(ii) there exist pi ∈ C(Ω), 0 ≤ pi(x) ≤ 1 such that

ki(x, y) ≥ pi(x)ki(z, y), for all x, y, z ∈ Ω;

(iii) maxx∈Ω

∫
Ω
ki(x, y)pi(y) dy is positive.

Lemma 1.2. Let Bi:C(Ω) → C(Ω) be defined by

Biu(x) =
∫

Ω

ki(x, y)u(y) dy, i = 1, 2.

Then the spectral radius of Bi, r(Bi) is positive.

Proof. From the definition of Bi and the conditions about ki, we have

Bipi(x) =
∫

Ω

ki(x, y)pi(y) dy ≥ pi(x)
∫

Ω

ki(z, y)pi(y) dy, x ∈ Ω,

and
Bipi(x) ≥ pi(x)‖Bipi‖, x ∈ Ω,

here
‖Bipi‖ = max

x∈Ω

∫
Ω

ki(x, y)pi(y) dy > 0.
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By induction, we get

Bn
i pi(x) ≥ pi(x)‖Bipi‖n, x ∈ Ω,

thus ‖Bn
i ‖ ≥ ‖Bipi‖n. From the formula of spectral radius, we know that

r(Bi) = lim
n→∞

‖Bn
i ‖1/n ≥ ‖Bipi‖ > 0. �

Definition 1.3. If f1, f2 in system (S) satisfy the following assumptions:

lim sup
u→0+

max
x∈Ω

f1(x, u, v)
u

<
1

r(B1)
uniformly w.r.t. v ∈ R+;(H1)

lim inf
v→0+

min
x∈Ω

f2(x, u, v)
v

>
1

r(B2)
uniformly w.r.t. u ∈ R+,(H2)

then we say that f1 is superlinear with respect to u at the origin and that f2 is
sublinear with respect to v at the origin.

Definition 1.4. If f1, f2 in system (S) satisfy the following assumptions:

lim inf
u→∞

min
x∈Ω

f1(x, u, v)
u

>
1

r(B1)
uniformly w.r.t. v ∈ R+;(H3)

lim sup
v→∞

max
x∈Ω

f2(x, u, v)
v

<
1

r(B2)
uniformly w.r.t. u ∈ R+,(H4)

then we say that f1 is superlinear with respect to u at infinity and that f2 is
sublinear with respect to v at infinity.

Our main result is the following.

Theorem 1.5. Assume that f1 is superlinear w.r.t. u at the origin and in-
finity, f2 is sublinear w.r.t. v at the origin and infinity and satisfies the following
condition:

(G) lim supu→∞maxx∈Ω f2(x, u, v) = g(v) uniformly w.r.t. v ∈ [0,M ] (for
all M > 0), here g is a locally bounded function.

Then system (S) has at least one positive solution.

Remark 1.6. If f1 is superlinear w.r.t. u at the origin and infinity and f2 is
also superlinear w.r.t. v at the origin and infinity, then system (S) has at least
one positive solution, which can be seen from Steps 1 and 2 in the proof of our
theorem.

Remark 1.7. If f1 is sublinear w.r.t. u at the origin and infinity and f2 is
also sublinear w.r.t. v at the origin and infinity, furthermore, there exist locally
bounded functions g1 and g2 such that

lim sup
v→∞

max
x∈Ω

f1(x, u, v) = g1(u)
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uniformly w.r.t. u ∈ [0,M ] and

lim sup
u→+∞

max
x∈Ω

f2(x, u, v) = g2(v)

uniformly w.r.t. v ∈ [0,M ] (for all M > 0), then system (S) has at least one
positive solution, which can be seen from Steps 3 and 4 in the proof of our
theorem.

The paper is organized as follows: in Section 2, we make some preliminaries;
in Section 3, we prove our main result; in Section 4, as applications, we prove
existence of positive solutions to systems of second order differential equations
with different boundary conditions.

2. Preliminaries

In this section, we shall construct a cone which is the Cartesian product of two
cones and change the problem (S) into a fixed point problem in the constructed
cone. At the same time, we will give some useful preliminary results for the
proof of our theorem.

It is well known that C(Ω) is a Banach space with the maximum norm
‖u‖ = maxx∈Ω |u(x)|, and C+(Ω) is a total cone of C(Ω). Choose bounded

domains Ωi ⊂ Ω (i = 1, 2) such that δi
def= minx∈Ωi

pi(x) > 0, which is feasible
by the hypotheses of pi. Now construct sub-cones and subsets as following:

Ki = {u ∈ C+(Ω) | u(x) ≥ δi‖u‖, for all x ∈ Ωi},
Kri

= {u ∈ Ki | ‖u‖ < ri}, ∂Kri
= {u ∈ Ki | ‖u‖ = ri}, for all ri > 0.

Noticing that Bi (i = 1, 2) is completely continuous and positive, it follows
from Lemma 1.2 and Krein–Rutman theorem (see [6]) that r(Bi) is one of eigen-
values for Bi and there exist positive eigenfunctions corresponding to r(Bi).

Lemma 2.1. Let ψi(x) be the positive eigenfunctions of Bi corresponding to
r(Bi) with

∫
Ω
ψi(x) dx = 1, then the following conclusions are valid:

(a)
∫
Ω
ψi(x)u(x) dx ≤ ‖u‖, for all u ∈ Ki;

(b) ψi(x) ≥ pi(x)‖ψi‖, for all x ∈ Ω;
(c) there exist constants ci > 0 such that

∫
Ω
ψi(x)u(x) dx ≥ ci‖u‖, for all

u ∈ Ki.

Proof. (a) Obviously,∫
Ω

ψi(x)u(x) dx ≤
∫

Ω

ψi(x) dx · ‖u‖ = ‖u‖.

(b) Noticing that ki(x, y) ≥ pi(x)ki(z, y), for all x, y, z ∈ Ω, we have∫
Ω

ki(x, y)ψi(y) dy ≥
∫

Ω

pi(x)ki(z, y)ψi(y) dy, for all x, z ∈ Ω
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and
r(Bi)ψi(x) ≥ r(Bi)pi(x)ψi(z), for all x, z ∈ Ω,

which implies that ψi(x) ≥ pi(x)‖ψi‖, for all x ∈ Ω.
(c) It follows from (b) and the definition of Ki. �

For λ ∈ [0, 1], u, v ∈ C+(Ω), we define the mappings:

Tλ,1( · , · ), Tλ,2( · , · ):C+(Ω)× C+(Ω) → C+(Ω),

Tλ( · , · ):C+(Ω)× C+(Ω) → C+(Ω)× C+(Ω)

by

Tλ,1(u, v)(x) =
∫

Ω

k1(x, y)[λf1(y, u(y), v(y)) + (1− λ)f1(y, u(y), 0)] dy,

Tλ, 2(u, v)(x) =
∫

Ω

k2(x, y)[λf2(y, u(y), v(y)) + (1− λ)f2(y, 0, v(y))] dy

and
Tλ(u, v)(x) = (Tλ,1(u, v)(x), Tλ, 2(u, v)(x)).

It is obvious that the existence of positive solutions of system (S) is equivalent
to the existence of nontrivial fixed points of T1 in K1 ×K2.

To compute the fixed point index of T1, we need the following results.

Lemma 2.2. Tλ:K1 ×K2 → K1 ×K2 is completely continuous.

Proof. For (u, v) ∈ K1 × K2, we show that Tλ(u, v) ∈ K1 × K2, i.e.
Tλ,1(u, v) ∈ K1 and Tλ,2(u, v) ∈ K2. By the above definitions and the con-
ditions about ki(x, y), we have

Tλ,1(u, v)(x) =
∫

Ω

k1(x, y)[λf1(y, u(y), v(y)) + (1− λ)f1(y, u(y), 0)] dy

≥ p1(x)
∫

Ω

k1(z, y)[λf1(y, u(y), v(y)) + (1− λ)f1(y, u(y), 0)] dy

= p1(x)Tλ,1(u, v)(z),

for all x, z ∈ Ω, which implies that

Tλ,1(u, v)(x) ≥ δ1‖Tλ,1(u, v)‖, x ∈ Ω1.

Similarly,
Tλ, 2(u, v)(x) ≥ δ2‖Tλ, 2(u, v)‖, x ∈ Ω2.

Hence, Tλ(K1 ×K2) ⊂ K1 ×K2. By the Arzelà–Ascoli theorem, we know that
Tλ:K1 ×K2 → K1 ×K2 is completely continuous. �

Remark 2.3. Denoting T (λ, u, v)(x) = Tλ(u, v)(x), T ([0, 1]×Kr1 ×Kr2) is
a compact set by the Arzelà–Ascoli theorem.
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Next, we recall some concepts about the fixed point index (see [2], [11]),
which will be used in the proof of our theorem. Let X be a Banach space and let
P ⊂ X be a closed convex cone in X. Assume that W is a bounded open subset
of X with boundary ∂W , and let A:P ∩W → P be a completely continuous
operator. If Au 6= u for u ∈ P ∩ ∂W , then the fixed point index i(A,P ∩W,P )
is defined. One important fact is that if i(A,P ∩W,P ) 6= 0, then A has a fixed
point in P ∩W . The following results are useful in our proof.

Lemma 2.4 ([2], [11]). Let E be a Banach space and let P ⊂ E be a closed
convex cone in E. For r > 0, denote

Pr = {u ∈ P | ‖u‖ < r}, ∂Pr = {u ∈ P | ‖u‖ = r}.

Let A:P → P be completely continuous. Then the following conclusions are
valid:

(a) if µAu 6= u for every u ∈ ∂Pr and µ ∈ (0, 1], then i(A,Pr, P ) = 1;
(b) if mapping A satisfies the following two conditions:

(b1) infu∈ ∂Pr
‖Au‖ > 0;

(b2) µAu 6= u for every u ∈ ∂Pr and µ ≥ 1,
then i(A,Pr, P ) = 0.

Lemma 2.5 ([1]). Let E be a Banach space and let Pi ⊂ E (i = 1, 2) be a
closed convex cone in E. For ri > 0 (i = 1, 2), denote

Pri = {u ∈ Pi | ‖u‖ < ri}, ∂Pri = {u ∈ Pi | ‖u‖ = ri}.

Suppose Ai:Pi → Pi is completely continuous. If ui 6= Aiui, for all ui ∈ ∂Pri
,

then
i(A,Pr1 × Pr2 , P1 × P2) = i(A1, Pr1 , P1) · i(A2, Pr2 , P2),

where A(u, v) def= (A1u,A2v), for all (u, v) ∈ P1 × P2.

3. Proof of Theorem 1.5

We will choose a bounded open set D = (KR1 \Kr1 )×(KR2 \Kr2 ) in product
cone K1×K2 and verify that a family of operators {Tλ}λ∈ I satisfy the sufficient
conditions for the homotopy invariance of fixed point index on ∂D. Next, we
separate the proof into four steps.

Step 1. From the superlinear assumption of f1 at the origin, there are ε ∈
(0, 1/r(B1)) and r1 > 0 such that

(3.1) λf1(x, u, v) + (1− λ)f1(x, u, 0) ≤ (1/r(B1)− ε)u,

for all x ∈ Ω, u ∈ [0, r1] and v ∈ R+. We claim that

(3.2) µTλ,1(u, v) 6= u, for all µ ∈ (0, 1] and (u, v) ∈ ∂Kr1 ×K2.
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In fact, if it is not true, then there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂Kr1 ×K2,
such that µ0Tλ,1(u0, v0) = u0. In combination with (3.1), it follows that

u0(x) ≤ Tλ,1(u0, v0)(x) ≤
∫

Ω

k1(x, y)(1/r(B1)− ε)u0(y) dy.

Multiplying the both sides of this inequality by ψ1(x) and integrating on Ω, we
get that∫

Ω

u0(x)ψ1(x) dx ≤
∫

Ω

∫
Ω

k1(x, y)(1/r(B1)− ε)u0(y)ψ1(x) dy dx,

and ∫
Ω

u0(x)ψ1(x) dx ≤ (1/r(B1)− ε)
∫

Ω

∫
Ω

k1(x, y)ψ1(x) dxu0(y) dy,

that is ∫
Ω

u0(x)ψ1(x) dx ≤ (1− r(B1)ε)
∫

Ω

u0(y)ψ1(y) dy.

Noticing that
∫
Ω
u0(x)ψ1(x) dx > 0, hence 1 ≤ 1− r(B1)ε, which is a contradic-

tion!

Step 2. By use of the superlinear hypothesis of f1 at infinity, there exist
ε > 0 and m > 0 such that

(3.3) λf1(x, u, v) + (1− λ)f1(x, u, 0) ≥ (1/r(B1) + ε)u,

for all x ∈ Ω, u ≥ m and v ∈ R+, thus

(3.4) λf1(x, u, v) + (1− λ)f1(x, u, 0) ≥ (1/r(B1) + ε)u− C0,

for all x ∈ Ω and u, v ∈ R+, here C0 = (1/r(B1) + ε)m.
We can prove that there exists a R1 > r1 such that

(3.5) µTλ,1(u, v) 6= u and inf
u∈∂KR1

‖Tλ,1(u, v)‖ > 0,

for all µ ≥ 1, (u, v) ∈ ∂KR1 ×K2.
First, if there are (u0, v0) ∈ K1×K2 and µ0 ≥ 1 such that u0 = µ0Tλ,1(u0, v0),

together with (3.4), we get that

u0(x) ≥ Tλ,1(u0, v0)(x) ≥
∫

Ω

k1(x, y)(1/r(B1) + ε)u0(y) dy − C.

It follows that∫
Ω

u0(x)ψ1(x) dx ≥
∫

Ω

∫
Ω

k1(x, y)(1/r(B1) + ε)u0(y) dyψ1(x)dx− C,

and ∫
Ω

u0(x)ψ1(x) dx ≥ (1 + r(B1)ε)
∫

Ω

u0(y)ψ1(y) dy − C,
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which yields ∫
Ω

u0(x)ψ1(x) dx ≤
C

r(B1)ε
.

Furthermore, in view of Lemma 2.1(c), we know that

‖u0‖ ≤
C

c1r(B1)ε
def= R∗.

Therefore, as R > R∗, u 6= µTλ,1(u, v) for all (u, v) ∈ ∂KR ×K2 and µ ≥ 1. In
addition, ifR > m/δ1, then by use of (3.3) we know that for all (u, v) ∈ ∂KR×K2,

‖Tλ,1(u, v)‖ ≥
∫

Ω

Tλ,1(u, v)(x)ψ1(x) dx

≥
∫

Ω

∫
Ω1

k1(y, x)(1/r(B1) + ε)u(y) dy ψ1(x) dx

≥ (1 + r(B1)ε)
∫

Ω1

u(y)ψ1(y) dy ≥ (1 + r(B1)ε)mes(Ω1)δ21‖ψ1‖R,

which implies that infu∈ ∂KR
‖Tλ,1(u, v)‖ > 0. Hence, we choose

R1 > max{r1, R∗,m/δ1}.

Step 3. In view of the sublinear assumption of f2 at the origin, there are
ε > 0 and r2 > 0 such that

(3.6) λf2(x, u, v) + (1− λ)f2(x, u, 0) ≥ (1/r(B1) + ε)v,

for all x ∈ Ω, v ∈ [0, r2] and u ∈ R+.
By (3.6) and the proof similar to Steps 1 and 2, we can deduce that

(3.7) µTλ,2(u, v) 6= v and inf
v∈∂Kr2

| Tλ,2(u, v)‖ > 0,

for all µ ≥ 1, (u, v) ∈ K1 × ∂Kr2 .

Step 4. By virtue of the sublinear hypothesis and condition (G) of f2 at
infinity, there exist ε ∈ (0, 1/r(B2)), n > 0 and C > 0 such that

(3.8) λf2(x, u, v) + (1− λ)f2(x, 0, v) ≤ (1/r(B2)− ε)v,

for all x ∈ Ω, v ≥ n and u ∈ R+, and

(3.9) λf2(x, u, v) + (1− λ)f2(x, 0, v) ≤ (1/r(B2)− ε)v + C,

for all x ∈ Ω and u, v ∈ R+.
From (3.8), (3.9) and the similar argument used in Step 2, it can be proved

that if v0 = µ0Tλ,2(u0, v0) for (u0, v0) ∈ K1 ×K2 and µ0 ∈ (0, 1], then

‖v0‖ ≤ R′
def=

C

c2r(B2)ε
.
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Hence, we choose R2 > max{r2, R′}, then

(3.10) µTλ, 2(u, v) 6= v, for all µ ∈ (0, 1] and (u, v) ∈ K1 × ∂KR2 .

Now we choose an open set D = (KR1 \Kr1 )× (KR2 \Kr2 ). Based on the
expressions (3.2), (3.5), (3.7) and (3.10), it is easy to verify that {Tλ}λ∈I satisfy
the sufficient conditions for the homotopy invariance of fixed point index on ∂D;
on the other hand, in combination with the classical fixed point index results
(see Lemma 2.4), we have

i(T0,1,Kr1 ,K1) = i(T0,2,KR2 ,K2) = 1,

i(T0,1,KR1 ,K1) = i(T0,2,Kr2 ,K2) = 0.

Applying the homotopy invariance of fixed point index and the product formula
for the fixed point index (see Lemma 2.5), we obtain that

i(T1, D,K1 ×K2) = i(T0, D,K1 ×K2) =
2∏

j=1

i(T0,j ,KRj \Krj ,Kj)

=
2∏

j=1

[i(T0, j ,KRj ,Kj)− i(T0, j ,Krj ,Kj)] = −1.

Therefore, system (S) has at least one positive solution. �

4. Applications

As applications, we consider existence of positive solutions for the following
system of second-order ordinary differential equations

(4.1)


−u′′(x) = f1(x, u(x), v(x)) for x ∈ Ω ≡ (0, 1),

−v′′(x) = f2(x, u(x), v(x)) for x ∈ Ω ≡ (0, 1),

u(0) = u(1) = 0,

v(0) = v′(1) = 0,

here f1, f2 ∈ C([0, 1]× R+ × R+,R+).

Theorem 4.1. Assume that f2 satisfies condition (G) and f1, f2 satisfy:

(H∗1) lim sup
u→0+

max
x∈[0,1]

f1(x, u, v)
u

< π2 < lim inf
u→∞

min
x∈[0,1]

f1(x, u, v)
u

uniformly w.r.t. v ∈ R+;

(H∗2) lim inf
v→0+

min
x∈[0,1]

f2(x, u, v)
v

>
π2

4
> lim sup

v→∞
max

x∈[0,1]

f2(x, u, v)
v

uniformly w.r.t. u ∈ R+.
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Then system (4.1) has at least one positive solution.

Proof. We know that system (4.1) is equivalent to the following system of
nonlinear Hammerstein integral equations

u(x) =
∫ 1

0

k1(x, y)f1(y, u(y), v(y)) dy for x ∈ [0, 1],

v(x) =
∫ 1

0

k2(x, y)f2(y, u(y), v(y)) dy for x ∈ [0, 1],

where

k1(x, y) =

{
x(1− y) if x ≤ y,

y(1− x) if y ≤ x,
and k2(x, y) =

{
x if x ≤ y,

y if y ≤ x.

It is easy to verify that kernel functions ki satisfy conditions (i)–(iii).
According to Theorem 1.5, we need only show that r(B1) = π−2 and r(B2) =

4π−2. On that purpose, we need only to verify that the minimal eigenvalue of
B−1

1 and B−1
2 is π2 and π2/4, respectively. It follows from the following linear

eigenvalue problems:{
−u′′(x) = λnu(x),

u(0) = u(1) = 0,
and

{
−v′′(x) = µnv(x),

v(0) = v′(1) = 0.

In fact, λn = n2π2 and µn = (n− 1/2)2π2, n ∈ N. �

Remark 4.2. For instance, f1(x, u, v) = max{| sinu|, u2}(1 + tan−1 v) and
f2(x, u, v) = π2(1 + cot−1 u)| sin v|, then f1 and f2 satisfy conditions (H∗1), (H∗2)
and (G).
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