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NONCONVEX PERTURBATIONS
OF SECOND ORDER MAXIMAL MONOTONE

DIFFERENTIAL INCLUSIONS

Dalila Azzam-Laouir — Sabrina Lounis

Abstract. In this paper we prove the existence of solutions for a two point

boundary value problem for a second order differential inclusion governed
by a maximal monotone operator with a mixed semicontinuous perturba-

tion.

1. Introduction

Existence of solutions for second order differential inclusions of the form
−ü(t) ∈ A(t)u(t) + F (t, u(t), u̇(t)) with three point boundary conditions has
been studied in [2], where A(t):E ⇒ E, (t ∈ [0, 1]) is a maximal monotone
operator and F : [0, 1]×E ×E ⇒ E is a nonempty convex compact valued mul-
tifunction, Lebesgue-measurable on [0, 1] and upper semicontinuous on E × E.
There are several results concerning the first order differential inclusions gover-
ned by maximal monotone operators with several classes of perturbations (see
[8]–[11]).

The existence of solutions of a number of differential inclusions with the
boundary conditions

(1.1)

{
a1u(t0)− a2u̇(t0) = c1,

b1u(T ) + b2u̇(T ) = c2,
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have been discussed in the literature, see for example [6], [12] and the references
therein, with a1, a2, b1, b2 ≥ 0, a1 + b1 > 0 and a2 + b2 > 0, which is a sufficient
condition to be able to construct a Green’s function for the boundary value
problem in consideration.

We will be concerned, in this work, with the existence of solutions of the
perturbed second order differential inclusion governed by a maximal monotone
operator of the form

−ü(t) ∈ A(t)u(t) + F (t, u(t), u̇(t)), for a.e. t ∈ [0, 1],

satisfying the boundary conditions (1.1) where a2 = b2 = c1 = c2 = 0 and
a1 = b1 = 1, t0 = 0 and T = 1 and where F is a measurable multifunction with
nonempty closed values satisfying the following mixed semicontinuity condition:
for every t ∈ [0, 1], at each (x, y) ∈ E×E such that F (t, x, y) is convex the mul-
tifunction F (t, · , · ) is upper semicontinuous on E×E and whenever F (t, x, y) is
not convex the multifunction F (t, · , · ) is lower semicontinuous on some neigh-
bourhood of (x, y).

Many existence results for problems with mixed semicontinuous perturba-
tions have been studied in the literature see for example [1], [3], [4], [13], [15]
and [16].

2. Notation and preliminaries

Throughout (E, ‖ · ‖) is a finite dimensional space, BE(0, r) is the closed
ball of E of center 0 and radius r > 0, L([0, 1]) is the σ-algebra of Lebesgue-
measurable sets of [0, 1] and B(E) is the σ-algebra of Borel subsets of E. By
L1

E([0, 1]) we denote the space of all Lebesgue–Bochner integrable E-valued map-
pings defined on [0, 1].

Let CE([0, 1]) be the Banach space of all continuous mappings u: [0, 1] → E,
endowed with the sup norm, and C1

E([0, 1]) be the Banach space of all continuous
mappings u: [0, 1] → E with continuous derivative, equipped with the norm

‖u‖C1 = max
{

max
t∈[0,1]

‖u(t)‖, max
t∈[0,1]

‖u̇(t)‖
}

.

Recall that a mapping v: [0, 1] → E is said to be scalarly derivable when there
exists some mapping v̇: [0, 1] → E (called the weak derivative of v) such that,
for every x′ ∈ E′, the scalar function 〈x′, v( · )〉 is derivable and its derivative is
equal to 〈x′, v̇( · )〉. The weak derivative v̈ of v̇ when it exists is the weak second
derivative.

By W2,1
E ([0, 1]) we denote the space of all continuous mappings u ∈ CE([0, 1])

such that their first usual derivatives are continuous and scalarly derivable and
ü ∈ L1

E([0, 1]).
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Recall that a multivalued operator A:E ⇒ E is monotone if, for each λ > 0,
and for each x1, x2 ∈ D(A), y1 ∈ Ax1, y2 ∈ Ax2, we have

(2.1) ‖x1 − x2‖ ≤ ‖(x1 − x2) + λ(y1 − y2)‖.

Furthermore, ifR(IE +λA) = E we said that A is a maximal monotone operator,
where D(A) = {x ∈ E : Ax 6= ∅} and R(A) =

⋃
x∈E Ax.

Proposition 2.1. If A:E ⇒ E is monotone and λ > 0, then

(a) JλA is a single-valued mapping and, for each x, y ∈ R(IE + λA),

(2.2) ‖JλAx− JλAy‖ ≤ ‖x− y‖;

(b) Aλ is single-valued, monotone and Lipschitz continuous on R(IE +λA)
with Lipschitz constant 2/λ;

(c) Aλx ∈ AJλAx for each x ∈ R(IE + λA);
(d)

(2.3)
1
λ
‖JλAx− x‖ = ‖Aλx‖ ≤ |Ax|0 = inf{‖y‖, y ∈ Ax},

for all x ∈ R(IE + λA) ∩D(A) where IE is the identity operator in E,
JλA = (IE + λA)−1 is the resolvent of A, and Aλ = (IE − JλA)/λ is
the Yosida approximation of A.

Theorem 2.2. Let E be a Banach space which has his topological dual uni-
formly convex. Then the graph of all maximal monotone operator A:E ⇒ E is
strongly-weakly sequentially closed.

Lemma 2.3. Suppose that H is a separable Hilbert space and A(t):H ⇒ H,
(t ∈ [0, 1]) is a maximal monotone operator satisfying the assumption:

(H) For every x ∈ H and for every λ > 0, the mapping t 7→ (IH +λA(t))−1x

is Lebesgue-measurable and there exists g ∈ L2
H([0, 1]) such that t 7→

(IH + λA(t))−1g(t) belongs to L2
H([0, 1]).

Let (un) and (vn) be sequences in L2
H([0, 1]) satisfying:

(a) (un) converges strongly to u ∈ L2
H([0, 1]) and (vn) converges to v ∈

L2
H([0, 1]) with respect to the weak topology σ(L2

H ,L2
H);

(b) vn(t) ∈ A(t)un(t) for all n and all t ∈ [0, 1].

Then we have v(t) ∈ A(t)u(t) for almost every t ∈ [0, 1].

Proof. We include the proof of this lemma for the convenience of the reader.
Let A: L2

H([0, 1]) ⇒ L2
H([0, 1]) be the operator defined by

v ∈ Au ⇔ v(t) ∈ A(t)u(t) for a.e. t ∈ [0, 1].
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A is a monotone operator. Indeed, let u1, u2 ∈ D(A), v1 ∈ Au1, v2 ∈ Au2,
t ∈ [0, 1] and λ > 0, we have u1(t), u2(t) ∈ D(A(t)) for all t ∈ [0, 1] and

‖u1 − u2‖2L2
H([0,1]) =

∫ 1

0

‖(u1(t)− u2(t))‖2 dt

≤
∫ 1

0

‖u1(t)− u2(t) + λ(v1(t)− v2(t)‖2 dt

= ‖u1 − u2 + λ(v1 − v2)‖2L2
H([0,1]),

using (2.1). Let us prove now that A is a maximal monotone operator, that is,
for all λ > 0

R(IL2
H

+ λA) = L2
H([0, 1]).

Let λ > 0 and let g ∈ L2
H([0, 1]). By the asumption (H), there exists g ∈

L2
H([0, 1]) such that the mapping h: t 7→ (IH +λA(t))−1g(t) belongs to L2

H([0, 1]).
Consider the mapping h: t 7→ (IH + λA(t))−1g(t). Using the fact that (IH +

λA(t))−1 is nonexpansive (see the relation (2.2)), we obtain

‖h‖L2
H([0,1]) ≤ ‖g − g‖L2

H([0,1]) + ‖h‖L2
H([0,1]).

Since g, g and h belong to L2
H([0, 1]), we conclude that h is Lebesgue-measurable

and belongs to L2
H([0, 1]), and furthermore,

h(t) = (IH + λA(t))−1g(t) for all t ∈ [0, 1]

⇔ g(t) ∈ (IH + λA(t))h(t) for all t ∈ [0, 1]

⇔ g ∈ (h + λAh)

⇔ g ∈ (IL2
H

+ λA)h

⇒ R(IL2
H

+ λA) = L2
H([0, 1]).

Thus A is a maximal monotone operator in the Hilbert space L2
H([0, 1]), by The-

orem 2.2, its graph is strongly-weakly sequentially closed. As un → u strongly
and vn → v weakly in L2

H([0, 1]), we conclude that v ∈ Au that is, v(t) ∈ A(t)u(t)
almost everywhere. �

We refer the reader to [5], [7] and [17] for the theory of maximal monotone
operators.

3. Main results

We begin this section by a useful lemma which summarizes some properties
of some Green type function. See [2], [6] and [14].
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Lemma 3.1. Let E be a separable Banach space, E′ its topological dual and
let G: [0, 1]× [0, 1] → R be the function defined by

G(t, s) =

{
(t− 1)s if 0 ≤ s ≤ t,

t(s− 1) if t ≤ s ≤ 1.

Then the following assertions hold:

(a) If u ∈ W2,1
E ([0, 1]) with u(0) = u(1) = 0, then

(3.1) u(t) =
∫ 1

0

G(t, s)ü(s) ds for all t ∈ [0, 1].

(b) G( · , s) is derivable on [0, 1], for every s ∈ [0, 1], and its derivative is
given by

∂G

∂t
(t, s) =

{
s if 0 ≤ s ≤ t,

(s− 1) if t < s ≤ 1.

(c) G( · , · ) and ∂G
∂t ( · , · ) satisfy

(3.2) sup
t,s∈[0,1]

|G(t, s)| ≤ 1, sup
t,s∈[0,1]

∣∣∣∣∂G

∂t
(t, s)

∣∣∣∣ ≤ 1.

(d) For f ∈ L1
E([0, 1]) and for the mapping uf : [0, 1] → E defined by

(3.3) uf (t) =
∫ 1

0

G(t, s)f(s) ds for all t ∈ [0, 1],

one has uf (0) = uf (1) = 0. Furthermore, the mapping uf is derivable,
and its derivative u̇f satisfies

(3.4) lim
h→0

uf (t + h)− uf (t)
h

= u̇f (t) =
∫ 1

0

∂G

∂t
(t, s)f(s) ds,

for all t ∈ [0, 1]. Consequently, u̇f is a continuous mapping from [0, 1]
into E.

(e) The mapping u̇f is scalarly derivable, that is, there exists a mapping
üf : [0, 1] → E such that, for every x′∈E′, the scalar function 〈x′, u̇f ( · )〉
is derivable, with d

dt 〈x
′, u̇f (t)〉 = 〈x′, üf (t)〉. Furthermore

(3.5) üf = f a.e. on [0, 1].

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [0, 1] → E be
a continuous mapping (respectively, a mapping in L1

E([0, 1])). Then the mapping

uf (t) =
∫ 1

0

G(t, s)f(s) ds for all t ∈ [0, 1],
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is the unique C2
E([0, 1])-solution (respectively, W2,1

E ([0, 1])-solution) to the differ-
ential equation {

ü(t) = f(t) for all t ∈ [0, 1],

u(0) = u(1) = 0.

Now we are able to give our first main result.

Theorem 3.3. Let E be a finite dimensional space, A(t):E ⇒ E, (t ∈ [0, 1]),
be a maximal monotone operator and F : [0, 1] × E × E ⇒ E be a closed valued
multifunction, satisfying the following assumptions:

(a) F is L([0, 1])⊗ B(E)⊗ B(E)-measurable;
(b) for every t ∈ [0, 1], at each (x, y) ∈ E ×E such that F (t, x, y) is convex

F (t, · , · ) is upper semicontinuous, and whenever F (t, x, y) is not convex
F (t, · , · ) is lower semicontinuous on some neighbourhood of (x, y);

(c) F (t, x, y) ⊂ ρ1(t)BE(0, 1) for all (t, x, y) ∈ [0, 1] × E × E, for some
nonnegative function ρ1 ∈ L2

R([0, 1]).

Suppose that the following assumptions are also satisfied:

(H1) For every x ∈ E and for every λ > 0, the mapping t 7→ (IE +λA(t))−1x

is Lebesgue-measurable and there exists g ∈ L2
E([0, 1]) such that t 7→

(IE + λA(t))−1g(t) belongs to L2
E([0, 1]);

(H2) there is a nonnegative function m2 ∈ L2
R([0, 1]) such that

|A(t)x|0 ≤ m2(t) for all (t, x) ∈ [0, 1]× E.

Then, there is a W2,1
E ([0, 1])-solution to the problem:

(PF )

{
−ü(t) ∈ A(t)u(t) + F (t, u(t), u̇(t)) for a.e. t ∈ [0, 1],

u(0) = u(1) = 0.

For the proof of our theorem we will need the following result which is a direct
consequence of Theorem 2.1 in [16].

Theorem 3.4. Let M : [0, 1]× E × E ⇒ E be a closed valued multifunction
satisfying hypotheses (a), (b) of Theorem 3.3 and the following one:

(d) there exits a Carathéodory function ζ: [0, 1] × E × E → R+ which is
integrably bounded and such that M(t, x, y)

⋂
BE(0, ζ(t, x, y)) 6= ∅ for

all (t, x, y) ∈ [0, 1]× E × E.

Then for any ε > 0 and any compact set K ⊂ C1
E([0, 1]) there is a nonempty

closed convex valued multifunction Φ: K ⇒ L1
E([0, 1]) which has a strongly-weakly

sequentially closed graph such that, for any u ∈ K and ϕ ∈ Φ(u), one has

ϕ(t) ∈ M(t, u(t), u̇(t)),(3.6)

‖ϕ(t)‖ ≤ ζ(t, u(t), u̇(t)) + ε,(3.7)
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for almost every t ∈ [0, 1].

Proof of Theorem 3.3. Step 1. Let m1 = ρ1 + 1/2,

S = {f ∈ L2
E([0, 1]) : ‖f(t)‖ ≤ m(t), a.e. t ∈ [0, 1]},

and

X =
{

uf : [0, 1] → E : uf (t) =
∫ 1

0

G(t, s)f(s) ds, for all t ∈ [0, 1], f ∈ S
}

.

It is clear that S is a convex σ(L2,L2)-compact subset of L2
E([0, 1]) and that X

is a convex compact subset of C1
E([0, 1]) equipped with norm ‖ · ‖C1 . Indeed, for

any uf ∈ X and for all t, τ ∈ [0, 1] we have

‖uf (t)− uf (τ)‖ =
∥∥∥∥∫ 1

0

G(t, s)f(s)ds−
∫ 1

0

G(τ, s)f(s)(s) ds

∥∥∥∥
≤

∫ 1

0

|G(t, s)−G(τ, s)|m(s) ds.

and, by the relation (3.4) in Lemma 3.1,

‖u̇f (t)− u̇f (τ)‖ =
∥∥∥∥∫ 1

0

∂G

∂t
(t, s)f(s) ds−

∫ 1

0

∂G

∂t
(τ, s)f(s) ds

∥∥∥∥
≤

∫ 1

0

∣∣∣∣∂G

∂t
(t, s)− ∂G

∂t
(τ, s)

∣∣∣∣m(s) ds.

Since m ∈ L2
E([0, 1]) and G is uniformly continuous, we get the equicontinuity

of the sets X and {u̇f : uf ∈ X}. On the other hand, for any uf ∈ X and for all
t ∈ [0, 1]

‖uf (t)‖ =
∥∥∥∥∫ 1

0

G(t, s)f(s) ds

∥∥∥∥ ≤ ∫ 1

0

‖f(s)‖ ds ≤
∫ 1

0

m(s) ds = ‖m‖L1
R

and

‖u̇f (t)‖ =
∥∥∥∥∫ 1

0

∂G

∂t
(t, s)f(s) ds

∥∥∥∥ ≤ ∫ 1

0

‖f(s)‖ ds ≤
∫ 1

0

m(s) ds = ‖m‖L1
R
.

Hence the sets X(t) = {uf (t) : uf ∈ X} and {u̇f (t) : uf ∈ X} are relatively
compact in the finite dimensional space E. The Ascoli–Arzelà theorem yields
that they are relatively compact in CE([0, 1]) and consequently X is relatively
compact in (C1

E([0, 1]), ‖ · ‖C1). We claim that X is closed in (C1
E([0, 1]), ‖ · ‖C1).

Let (ufn
) be a sequence in X converging uniformly to ζ ∈ C1

E([0, 1] with respect
to ‖ · ‖C1 . As S is weakly compact in L2

E([0, 1]) and then in L1
E([0, 1]), we

extract from (fn) a subsequence that we do not relabel and which converges
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in L1
E([0, 1]) with respect to the weak topology σ(L1

E([0, 1]),L∞E ([0, 1])) to some
mapping f ∈ S. In particular, for every t ∈ [0, 1]

lim
n→∞

ufn
(t) = lim

n→∞

∫ 1

0

G(t, s)fn(s) ds =
∫ 1

0

G(t, s)f(s) ds.

Thus we get ζ = uf . This shows the compactness of X in C1
E([0, 1]).

Step 2. By Theorem 3.6, there is a nonempty closed convex valued multi-
function Φ:X ⇒ L2

E([0, 1]) such that for any uf ∈ X and ϕ ∈ Φ(uf ) one has

ϕ(t) ∈ F (t, uf (t), u̇f (t)) and ‖ϕ(t)‖ ≤ m1(t)

for almost every t ∈ [0, 1].
Let us define the multifunction Ψ:X ⇒ C1

E([0, 1]) by

Ψ(v) =
{

u: [0, 1] → E

∣∣∣∣ there exists f ∈ S such that

u(t) = uf (t) =
∫ 1

0

G(t, s)f(s) ds, for all t ∈ [0, 1],

f(t) ∈ −A(t)v(t)− g(t) a.e. and g ∈ Φ(v)
}

.

We claim that, for any v ∈ X, Ψ(v) is a nonempty subset of X. Let (λn) be
a decreasing sequence in ]0, 1[, such that λn → 0. For each n ∈ N and any
g ∈ Φ(v), let us consider the mapping fn defined by

fn(t) = −Aλn
(t)v(t)− g(t), for all t ∈ [0, 1].

The mapping fn is Lebesgue-measurable and in view of (H2) and the relation
(2.3) we have

‖fn(t)‖ ≤ m1(t) + m2(t) = m(t), a.e. t ∈ [0, 1],

that is, (fn) ⊂ S. Hence by extracting a subsequence (that we do not relabel)
we may suppose that (fn) converges σ(L2

E ,L2
E) to some mapping f ∈ S. On the

other hand, we have for all t ∈ [0, 1] (see Proposition 2.1(c))

(3.8) −fn(t)− g(t) = Aλn
(t)v(t) ∈ A(t)Jλn

A(t)v(t).

But, by the relation (2.3) and (H2)

‖Jλn
A(t)v(t)− v(t)‖ = λn‖Aλn

(t)v(t)‖ ≤ λnm2(t).

As λn → 0, we conclude that ‖Jλn
A(t)v(t) − v(t)‖ → 0. On the other hand,

since λn < 1 and v ∈ X we get

‖Jλn
A(t)v(t)‖ ≤ λnm2(t) + ‖v(t)‖ ≤ m2(t) +

∫ 1

0

m(s) ds
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for all n ∈ N and all t ∈ [0, 1] using the definition of X and the inequalities of the
relation (3.2). Consequently Jλn

A( · )v( · ) → v( · ) in L2
E([0, 1]) by Lebesgue’s

theorem. As (fn + g) converges σ(L2
E ,L2

E) to f + g, the relation (3.8) and
Lemma 2.3 ensure that

f(t) + g(t) ∈ −A(t)v(t) almost everywhere,

that is, the mapping uf defined by

uf (t) =
∫ 1

0

G(t, s)f(s) ds for all t ∈ [0, 1]

belongs to Ψ(v), since f ∈ S. This shows that Ψ(v) is a nonempty subset of X.
Furthermore, Ψ(v) is convex for any v ∈ X since Φ(v) and A(t)v(t) are convex
sets. Let us prove now, that Ψ(v) is a compact subset of X. As X is compact
it is sufficient to prove that Ψ(v) is closed. Let (ufn) be a sequence in Ψ(v)
converging to w( · ) in (C1

E([0, 1]), ‖ · ‖C1), that is, for each n ∈ N

ufn(t) =
∫ 1

0

G(t, s)fn(s) ds for all t ∈ [0, 1], fn ∈ S,

fn(t) ∈ −A(t)v(t)− gn(t) a.e. and gn ∈ Φ(v).

Since S and Φ(v) are σ(L2
E ,L2

E)-compact, extracting subsequences we may sup-
pose that (fn) σ(L2

E ,L2
E)-converges to some mapping f ∈ S and (gn) σ(L2

E ,L2
E)-

converges to some mapping g ∈ Φ(v). Hence, by Lemma 2.3 we get

f(t) ∈ −A(t)v(t)− g(t) almost everywhere.

Using the compactness of X and the fact that (fn) converges σ(L2
E ,L2

E) to f we
conclude that (ufn) converges to uf in (C1

E([0, 1]), ‖ · ‖C1). Thus we get w = uf

and consequently Ψ(v) is closed.
Finally, we need to check that Ψ is upper semicontinuous on the convex

compact set X or equivalently, the graph of Ψ

gph(Ψ) = {(v, u) ∈ X×X : u ∈ Ψ(v)}

is closed in X× X. Let (vn, un) be a sequence in gph(Ψ) converging to (v, u) ∈
X×X, that is, (vn, un) ∈ X×X and un ∈ Ψ(vn). (un) ⊂ X implies that there is
a sequence (fn) ⊂ S such that

un(t) = ufn
(t) =

∫ 1

0

G(t, s)fn(s) ds for all t ∈ [0, 1].

Since (fn) ⊂ S, extracting a subsequence we may suppose that (fn) σ(L2
E ,L2

E)-
converges to some mapping f ∈ S. Hence (ufn

) converges in (C1
E([0, 1]), ‖ · ‖C1)

to uf . Thus we get u = uf . On the other hand, un ∈ Ψ(vn) implies that

(3.9) fn(t) ∈ −A(t)vn(t)− gn(t) almost everywhere,



314 D. Azzam-Laouir — S. Lounis

and (gn) ⊂ Φ(vn) ⊂ m1(t)BE(0, 1) (see the relation (3.7)). Then by extracting
a subsequence we may suppose that (gn) σ(L2

E ,L2
E)-converges to some mapping

g ∈ m1(t)BE(0, 1). As (vn) converges uniformly to v and as the graph of Φ
is strongly-weakly sequentially closed we conclude that g ∈ Φ(v). Hence, the
relation (3.9) and Lemma 2.3 ensure that

f(t) ∈ −A(t)v(t)− g(t) almost everywhere.

This shows that gph(Ψ) is closed in X×X and hence we get the upper semicon-
tinuity of Ψ. An application of the Kakutani fixed point theorem gives some
uf ∈ Ψ(uf ). This means f(t) ∈ −A(t)uf (t) − g(t) almost everywhere and
g ∈ Φ(uf ) or equivalently (see the relation (3.6)) g(t) ∈ F (t, uf (t), u̇f (t)) al-
most everywhere. By (3.3) and (3.5) we get{

−üf (t) ∈ A(t)uf (t) + F (t, uf (t), u̇f (t)) for almost every t ∈ [0, 1],

uf (0) = uf (1) = 0.

This completes the proof of our theorem. �

It is worth to mention that if u is a solution of (PF ), then u ∈ X and hence
‖u( · )‖C1 ≤ ‖m‖L1

R
.

Now we present an other existence result of solutions of the problem (PF ) if
we replace the hypotheses (c) and (H2) in Theorem 3.4 by the following ones:

(e) there exists a nonnegative function ρ1 ∈ L2
R([0, 1]) and two nonnegative

functions p, q ∈ L2
R([0, 1]) satisfying ‖p + q‖L1

R
< 1, such that

F (t, x, y) ⊂ (ρ1(t) + p(t)‖x‖+ q(t)‖y‖)BE(0, 1),

for all (t, x, y) ∈ [0, 1]× E × E.
(H3) There is a nonnegative function m2 ∈ L2

R([0, 1]) such that

sup{‖y‖ : y ∈ A(t)x} ≤ m2(t), for all (t, x) ∈ [0, 1]× E.

For this purpose we need the following fundamental lemma.

Lemma 3.5. Suppose that the assumptions (a), (b), (e) (H1) and (H3) are
satisfied. If u is a W2,1

E ([0, 1])-solution of the problem (PF ), then for all t ∈ [0, 1]
we have

(3.10) ‖u(t)‖ ≤ α, ‖u̇(t)‖ ≤ α

where α = ‖m‖L1
R
/(1− ‖p + q‖L1

R
), and m1 = ρ1 + 1/2 and m = m1 + m2.
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Proof. Suppose that u is a solution of the differential inclusion (PF ). By
the hypothesis (e) and (H3) we have

‖ü(t)‖ ≤ m2(t) + ‖F (t, u(t), u̇(t))‖
≤ m2(t) + ρ1(t) + p(t)‖u(t)‖+ q(t)‖u̇(t)‖
= m(t) + p(t)‖u(t)‖+ q(t)‖u̇(t)‖.

But, by the relation (3.1) and (3.2) in Lemma 3.1 we have

‖u(t)‖ =
∥∥∥∥∫ 1

0

G(t, s)ü(s) ds

∥∥∥∥ ≤ ∫ 1

0

|G(t, s)|‖ü(s)‖ ds

≤
∫ 1

0

(m(s) + p(s)‖u(s)‖+ q(s)‖u̇(s)‖) ds

≤
∫ 1

0

m(s) ds +
∫ 1

0

(p(s)‖u‖C1 + q(s)‖u‖C1) ds

≤ ‖m‖L1
R

+ ‖u‖C1(‖p + q‖L1
R
),

and by (3.2) and (3.4)

‖u̇(t)‖ =
∥∥∥∥∫ 1

0

∂G

∂t
(t, s)ü(s) ds

∥∥∥∥ ≤ ∫ 1

0

∣∣∣∣∂G

∂t
(t, s)

∣∣∣∣‖ü(s)‖ ds

≤
∫ 1

0

(m(s) + p(s)‖u(s)‖+ q(s)‖u̇(s)‖) ds

≤ ‖m‖L1
R

+ ‖u‖C1(‖p + q‖L1
R
).

Then
‖u‖C1 ≤ ‖m‖L1

R
+ (‖p + q‖L1

R
)‖u‖C1 ,

or equivalently

‖u‖C1 ≤
‖m‖L1

R

1− ‖p + q‖L1
R

,

this shows the estimates (3.10). �

We mention now our second existence result of solutions of (PF ).

Theorem 3.6. Let E be a finite dimensional space, A(t):E ⇒ E, (t ∈ [0, 1]),
be a maximal monotone operator and F : [0, 1] × E × E ⇒ E be a closed valued
multifunction. Assume that the hypotheses (a), (b), (e), (H1) and (H3) are
satisfied. Then, the differential inclusion (PF ) has at least a W2,1

E ([0, 1]-solution.

Proof. Let us consider the mapping πκ: [0, 1]× E → E given by

πκ(t, x) =

{
x if ‖x‖ ≤ κ,

κx/‖x‖ if ‖x‖ > κ,

and consider the multifunction F0: [0, 1]× E × E ⇒ E defined by

F0(t, x, y) = F (t, πα(t, x), πα(t, y)).
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Then F0 inherits the properties (a) and (b) on F , and furthermore

‖F0(t, x, y)‖ = ‖F (t, πα(t, x), πα(t, y))‖
≤ ρ1(t) + p(t)‖πα(t, x)‖+ q(t)‖πα(t, y)‖
≤ ρ1(t) + p(t)α + q(t)α = ρ1(t) + α(p(t) + q(t)) := β1(t),

for all (t, x, y) ∈ [0, 1] × E × E. Consequently F0 satisfies all the hypotheses of
Theorem 3.4. Hence, we conclude the existence of a W2,1

E ([0, 1])-solution u of
the problem (PF0). Furthermore, u satisfy the estimates

(3.11) ‖u(t)‖ ≤ ‖β + m2‖L1
R
, ‖u̇(t)‖ ≤ ‖β + m2‖L1

R
,

where β = β1 + 1/2.
Now, let us observe that u is a solution of

(PF )

{
−ü(t) ∈ A(t)u(t) + F (t, u(t), u̇(t)), for a.e. t ∈ [0, 1],

u(0) = u(1) = 0,

if and only if u is a solution of

(PF0)

{
−ü(t) ∈ A(t)u(t) + F0(t, u(t), u̇(t)), for a.e. t ∈ [0, 1],

u(0) = u(1) = 0.

Indeed, let u be a solution of (PF ). By Lemma 3.5 we have

‖u(t)‖ ≤ α, ‖u̇(t)‖ ≤ α,

for all t ∈ [0, 1]. Hence πα(t, u(t)) = u(t) and πα(t, u̇(t)) = u̇(t) and consequently{
−ü(t) ∈ A(t)u(t) + F0(t, u(t), u̇(t)) for a.e. t ∈ [0, 1],

u(0) = u(1) = 0,

that is, u is a solution of (PF0). Suppose now that u is a solution of (PF0). Then

‖ü(t)‖ ≤ m2(t) + ‖F0(t, u(t), u̇(t))‖ ≤ m2(t) + β(t)

= m2(t) + m1(t) + α(p(t) + q(t)) = m(t) + α(p(t) + q(t)),

and by (3.11) we have

‖u(t)‖ ≤ ‖m1 + α(p + q) + m2‖L1
R
≤ ‖m‖L1

R
+ α‖p + q‖L1

R
,(3.12)

‖u̇(t)‖ ≤ ‖m1 + α(p + q) + m2‖L1
R
≤ ‖m‖L1

R
+ α‖p + q‖L1

R
.(3.13)

But, if we replace α = ‖m‖L1
R
/(1− ‖p + q‖L1

R
) in (3.12) and (3.13) we obtain

‖u(t)‖ ≤ α and ‖u̇(t)‖ ≤ α for all t ∈ [0, 1], that is, πα(t, u(t)) = u(t) and
πα(t, u̇(t)) = u̇(t). Consequently,

− ü(t) ∈ A(t)u(t) + F0(t, u(t), u̇(t)) for a.e. t ∈ [0, 1]

⇒− ü(t) ∈ A(t)u(t) + F (t, u(t), u̇(t)) for a.e. t ∈ [0, 1],
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with u(0) = u(1) = 0. We conclude that u is a solution of (PF ). This finished
the proof of the theorem. �
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