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NONCONVEX PERTURBATIONS
OF SECOND ORDER MAXIMAL MONOTONE
DIFFERENTIAL INCLUSIONS

DArLiLA AzzAM-LAOUIR — SABRINA LOUNIS

ABSTRACT. In this paper we prove the existence of solutions for a two point
boundary value problem for a second order differential inclusion governed
by a maximal monotone operator with a mixed semicontinuous perturba-
tion.

1. Introduction

Existence of solutions for second order differential inclusions of the form
—i(t) € A(t)u(t) + F(t,u(t),a(t)) with three point boundary conditions has
been studied in [2], where A(t):E = E, (¢t € [0,1]) is a maximal monotone
operator and F:[0,1] x £ x E = F is a nonempty convex compact valued mul-
tifunction, Lebesgue-measurable on [0, 1] and upper semicontinuous on E x E.
There are several results concerning the first order differential inclusions gover-
ned by maximal monotone operators with several classes of perturbations (see
8]-[11)).

The existence of solutions of a number of differential inclusions with the
boundary conditions

(1.1) alu(to) — agﬂ(to) = (1,
bl'LL(T) + bQU(T) = C2,
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have been discussed in the literature, see for example [6], [12] and the references
therein, with ay,as,b1,b2 > 0, a1 + by > 0 and ag + by > 0, which is a sufficient
condition to be able to construct a Green’s function for the boundary value
problem in consideration.

We will be concerned, in this work, with the existence of solutions of the
perturbed second order differential inclusion governed by a maximal monotone
operator of the form

—i(t) € A(t)u(t) + F(t,u(t),u(t)), fora.e. te€][0,1],

satisfying the boundary conditions (1.1) where ag = by = ¢ = ¢ = 0 and
a1 =b; =1,tg =0 and T =1 and where F' is a measurable multifunction with
nonempty closed values satisfying the following mixed semicontinuity condition:
for every t € [0, 1], at each (x,y) € E x E such that F(¢,z,y) is convex the mul-
tifunction F'(¢, -, - ) is upper semicontinuous on £ X F and whenever F(t,z,y) is
not convex the multifunction F(¢, -, -) is lower semicontinuous on some neigh-
bourhood of (z,y).

Many existence results for problems with mixed semicontinuous perturba-
tions have been studied in the literature see for example [1], [3], [4], [13], [15]
and [16].

2. Notation and preliminaries

Throughout (E, || - ||) is a finite dimensional space, Bg(0,r) is the closed
ball of E of center 0 and radius r > 0, £([0,1]) is the o-algebra of Lebesgue-
measurable sets of [0,1] and B(E) is the o-algebra of Borel subsets of E. By
LL([0,1]) we denote the space of all Lebesgue-Bochner integrable E-valued map-
pings defined on [0, 1].

Let Cg([0,1]) be the Banach space of all continuous mappings u: [0,1] — E,
endowed with the sup norm, and CL([0, 1]) be the Banach space of all continuous
mappings u: [0,1] — F with continuous derivative, equipped with the norm

fuller = ma { g o), s o) -

Recall that a mapping v: [0, 1] — E is said to be scalarly derivable when there
exists some mapping v:[0,1] — E (called the weak derivative of v) such that,
for every x’ € E’, the scalar function (z’,v(-)) is derivable and its derivative is
equal to (z’,0(-)). The weak derivative ¢ of © when it exists is the weak second
derivative.

By W2E’1([O, 1]) we denote the space of all continuous mappings u € Cg([0, 1])
such that their first usual derivatives are continuous and scalarly derivable and
i € Li([0,1]).



NONCONVEX PERTURBATIONS OF SECOND ORDER 307

Recall that a multivalued operator A: E = F is monotone if, for each A > 0,
and for each x1, xo € D(A), y1 € Axq, ya € Axo, we have

(2.1) |71 — 22|l < [[(z1 —22) + A(y1 — y2)||-

Furthermore, if R(Ig+AA) = E we said that A is a maximal monotone operator,
where D(A) = {z € E: Az # 0} and R(A) = U, p Az
ProposITION 2.1. If A: E =2 E is monotone and A > 0, then
(a) JrA is a single-valued mapping and, for each x,y € R(Ig + M\A),

(2.2) [I3Az — JxAy|| < [lz — ylJ;

(b) Ay is single-valued, monotone and Lipschitz continuous on R(Ig + A\A)
with Lipschitz constant 2/X;

(¢) Axx € AJy\Ax for each v € R(Igp + AA);

(d)

1 .
(2:3) Az —z| = [|Ase| < |Azlo = inf{]ly], y € Az},

for all x € R(Ig + NA) N D(A) where Ig is the identity operator in E,
INA = (Ig + NA)7L is the resolvent of A, and Ay = (Ig — Jy\A)/\ is
the Yosida approzimation of A.

THEOREM 2.2. Let E be a Banach space which has his topological dual uni-
formly convex. Then the graph of all maximal monotone operator A:E = E is

strongly-weakly sequentially closed.
LEMMA 2.3. Suppose that H is a separable Hilbert space and A(t): H = H,
(t € 10,1]) is a mazimal monotone operator satisfying the assumption:

(H) For every x € H and for every X > 0, the mapping t — (Iy+MA(t)) "'z
is Lebesgue-measurable and there exists g € L%([0,1]) such that t —
(I + MA(t))1g(¢) belongs to L% ([0,1]).

Let (uy) and (vy,) be sequences in L% ([0,1]) satisfying:

(a) (un) converges strongly to u € L%([0,1]) and (v,) converges to v €
L% ([0,1]) with respect to the weak topology o(L%;,L%);
(b) v (t) € A(t)un(t) for all n and all t € [0,1].

Then we have v(t) € A(t)u(t) for almost every t € [0, 1].

PRrOOF. We include the proof of this lemma for the convenience of the reader.
Let A: L% ([0,1]) = L%(]0, 1]) be the operator defined by

v € Au & v(t) € A(t)u(t) for a.e. t € [0,1].
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A is a monotone operator. Indeed, let uj,us € D(A), v1 € Auj,va € Aug,
t €[0,1) and A > 0, we have uq(t), uz(t) € D(A(t)) for all ¢ € [0, 1] and

1
HW_WMMWD:AHWﬁ%ﬂMmWﬁ

SAHM@—W®+MM@—W@Hﬁ

= Jlur — ug + A(vr — UQ)H%?_I([OJ])a

using (2.1). Let us prove now that 4 is a maximal monotone operator, that is,
forall A >0

R(Iz, + AA) = L ([0, 1]).
Let A > 0 and let ¢ € L%([0,1]). By the asumption (H), there exists § €
L.2,([0,1]) such that the mapping h:t — (I +AA(t))~1g(t) belongs to L2 ([0, 1]).

Consider the mapping h:t — (I + AA(t))"1g(t). Using the fact that (Iz +
AA(t))~! is nonexpansive (see the relation (2.2)), we obtain

12llLz, o,y < 19 = FllLe, o,y + ITllLe, o,y

Since g, g and h belong to L2 ([0, 1]), we conclude that h is Lebesgue-measurable
and belongs to L% ([0,1]), and furthermore,

h(t) = (Ig + MA(t))"'g(t)  for all t € [0,1]
& g(t) € (In + MA(L)h(t) for all ¢ € [0, 1]
& g €(h+ MAh)
& g € (I, + AR
= R(Ipz, + M) = L ([0,1]).

Thus A is a maximal monotone operator in the Hilbert space L% ([0, 1]), by The-
orem 2.2, its graph is strongly-weakly sequentially closed. As u,, — wu strongly
and v, — v weakly in L% ([0, 1]), we conclude that v € Au that is, v(t) € A(t)u(t)
almost everywhere. O

We refer the reader to [5], [7] and [17] for the theory of maximal monotone
operators.

3. Main results

We begin this section by a useful lemma which summarizes some properties
of some Green type function. See [2], [6] and [14].
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LEMMA 3.1. Let E be a separable Banach space, E' its topological dual and
let G:[0,1] x [0,1] — R be the function defined by

(t—1)s if0<s<t,
G(t,s) =
t(s—1) ift<s<l.
Then the following assertions hold:

(a) If u e W5'(]0,1]) with u(0) = u(1) = 0, then

1
(3.1) u(t) = / G(t,s)i(s)ds for allt € [0,1].
0
(b) G(-,s) is deriwable on [0,1], for every s € [0,1], and its derivative is
given by
oG s if 0 <s<t,
7(25’ 5) =
ot (s—1) ift<s<l
(©) G(-. ) and 25 -) satisfy
(3.2) sup |G(t,s)] <1, sup §(t,s) <1
t,5€[0,1] t,s€f0,1) | O

(d) For f € Ly([0,1]) and for the mapping uys:[0,1] — E defined by

1
(3.3) up(t) = /o G(t,s)f(s)ds for allt € [0,1],

one has uy(0) = us(1l) = 0. Furthermore, the mapping uys is derivable,
and its derivative iy satisfies
t+h) —ugt e
(3.0 ti YOI =0y = [ g ps)as,

h—0 0 ot

for all t € [0,1]. Consequently, iy is a continuous mapping from [0, 1]
into E.

(e) The mapping uy is scalarly derivable, that is, there exists a mapping
ti5:[0,1] — E such that, for every 2’ € E', the scalar function (x',us(-))
is derivable, with S-(x' iy (t)) = (¢, iif(t)). Furthermore

(3.5) tiy=f ae onl0,1].

Let us mention a useful consequence of Lemma 3.1.

PROPOSITION 3.2. Let E be a separable Banach space and let f:]0,1] — E be
a continuous mapping (respectively, a mapping in L} ([0,1])). Then the mapping

ug(t) :/0 G(t,s)f(s)ds forallt € [0,1],
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is the unique C%([0, 1])-solution (respectively, W' ([0, 1])-solution) to the differ-
ential equation

w(t) = f(¢) for all t €10,1],

u(0) =u(l) =0.

Now we are able to give our first main result.

THEOREM 3.3. Let E be a finite dimensional space, A(t): E = E, (t € [0,1]),
be a mazximal monotone operator and F:[0,1] x E x E = E be a closed valued
multifunction, satisfying the following assumptions:

(a) F is L([0,1]) @ B(E) @ B(E)-measurable;
(b) for everyt € [0,1], at each (x,y) € E x E such that F(t,z,y) is convex
F(t, -, -) is upper semicontinuous, and whenever F (t,x,y) is not convex
F(t, -, ) is lower semicontinuous on some neighbourhood of (x,y);
(c) F(t,x,y) C pi(t)B(0,1) for all (t,z,y) € [0,1] x E x E, for some
nonnegative function py € L2([0,1]).
Suppose that the following assumptions are also satisfied:
(H1) For every x € E and for every A > 0, the mapping t — (Ip+ M A(t)) 'z
is Lebesgque-measurable and there exists g € L%(]0,1]) such that t —
(Ig + AA(t))~1g(t) belongs to L%([0,1]);
(H2) there is a nonnegative function ms € L3(]0,1]) such that

|[A(t)z|o < ma(t) for all (t,z) €[0,1] x E.

Then, there is a W%l([O, 1])-solution to the problem:

Pr) { —ii(t) € A(t)u(t) + F(t,u(t),u(t)) for a.e. t €[0,1],
r u(0) = u(1) = 0.

For the proof of our theorem we will need the following result which is a direct
consequence of Theorem 2.1 in [16].

THEOREM 3.4. Let M:[0,1] x E x E = E be a closed valued multifunction
satisfying hypotheses (a), (b) of Theorem 3.3 and the following one:
(d) there exits a Carathéodory function (:[0,1] x E x E — R which is
integrably bounded and such that M(t,z,y)(\Bg(0,((t,z,y)) # 0 for
all (t,z,y) €[0,1] x E x E.

Then for any e > 0 and any compact set K C CL([0,1]) there is a nonempty
closed convex valued multifunction ®: K = L4,([0,1]) which has a strongly-weakly
sequentially closed graph such that, for any v € K and ¢ € ®(u), one has

(3.6) p(t) € M(t,u(t), i),
I < ¢t ult), a(t) + &,
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for almost every t € [0, 1].

PROOF OF THEOREM 3.3. Step 1. Let mq = p1 + 1/2,
S={f e LE([0,1]) : [f(®)Il <m(t), ae. t €[0,1]},

and
X—{uf:[O,l]HE:uf /Gts s)ds, for all t € [0,1], fES}.

It is clear that S is a convex o(L?, L?)-compact subset of L%([0,1]) and that X
is a convex compact subset of C%([0, 1]) equipped with norm || - | c:. Indeed, for
any uy € X and for all ¢,7 € [0, 1] we have

st~ sl = | [ Gt [ Gronpions) as
< [ 1600.9) - Gtr.s)pmis) s

and, by the relation (3.4) in Lemma 3.1,

fis il = | [ S2eoneas— [ Ko

S/ oG oG
0

- t -

2 (1,5) ~ S (r.5)
Since m € L%([0,1]) and G is uniformly continuous, we get the equicontinuity
of the sets X and {4 : uy € X}. On the other hand, for any u; € X and for all

t €10,1]
< [1sds < [ misds = iy

HWW=HIGWW@®

m(s)ds.

fistol = | [ 5205610 < [ 1aas < [ mis)as = fmly

Hence the sets X(t) = {uy(t) : uy € X} and {us(t) : uy € X} are relatively
compact in the finite dimensional space E. The Ascoli-Arzela theorem yields
that they are relatively compact in Cg([0,1]) and consequently X is relatively
compact in (CL([0,1]),| - |lcr). We claim that X is closed in (CL([0,1]), ] - [|c1)-
Let (uy,) be a sequence in X converging uniformly to ¢ € CL([0, 1] with respect
to || - lcr. As S is weakly compact in L%([0,1]) and then in L([0,1]), we
extract from (f,) a subsequence that we do not relabel and which converges
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in LL([0,1]) with respect to the weak topology o(LL([0,1]), LS([0,1])) to some
mapping f € S. In particular, for every ¢ € [0, 1]

lim uy, (t) = lim G(t $) fn(s ds-/ G(t,s)

n—oo n— o0 0

Thus we get ¢ = uy. This shows the compactness of X in CL([0, 1]).

Step 2. By Theorem 3.6, there is a nonempty closed convex valued multi-
function ®: X = L%([0,1]) such that for any uy € X and ¢ € ®(uy) one has

p(t) € Ft,up(t),ar(t)) and o) <ma(t)

for almost every t € [0, 1].
Let us define the multifunction ¥: X = CL([0, 1]) by

U(v) = {u: [0,1] - E ‘ there exists f € S such that

1
u(t) = uy(t) = /0 G(t,s)f(s)ds, for all t € [0,1],

f(t) e —A@t)v(t) — g(t) a.e. and g € CI)(U)}.

We claim that, for any v € X, ¥U(v) is a nonempty subset of X. Let (\,) be
a decreasing sequence in |0, 1[, such that A, — 0. For each n € N and any
g € ®(v), let us consider the mapping f,, defined by

fa(t) = —=Ay, (H)v(t) — g(t), forallt e |0,1].

The mapping f, is Lebesgue-measurable and in view of (H2) and the relation
(2.3) we have

[ (O < mai(t) +ma(t) = m(t), ae.tel0,1],

that is, (fn) C S. Hence by extracting a subsequence (that we do not relabel)
we may suppose that (f,) converges o(L%,L%) to some mapping f € S. On the
other hand, we have for all ¢ € [0, 1] (see Proposition 2.1(c))

(3-8) —fa(t) = g(t) = Ay, (H)o(t) € A(t)Jx, A(t)o(D)-
But, by the relation (2.3) and (H2)
175, A)v(t) —v(@)] = AnllAx, V()] < Anma(2).

As X\, — 0, we conclude that ||Jx, A(t)v(t) —v(t)]] — 0. On the other hand,
since A\, < 1 and v € X we get

[ T3, A@)v(@)]| < Anmna(t) + [[o(B)]] < ma(t / m(
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for all n € N and all ¢ € [0, 1] using the definition of X and the inequalities of the
relation (3.2). Consequently Jy, A(-)v(-) — v(-) in L%([0,1]) by Lebesgue’s
theorem. As (f, + g) converges o(L%,L%) to f + g, the relation (3.8) and
Lemma 2.3 ensure that

f(t) +g(t) € —A(t)v(t) almost everywhere,

that is, the mapping us defined by

ur(t) :/0 G(t,s)f(s)ds forallt e [0,1]

belongs to ¥(v), since f € S. This shows that ¥(v) is a nonempty subset of X.
Furthermore, ¥(v) is convex for any v € X since ®(v) and A(t)v(t) are convex
sets. Let us prove now, that ¥(v) is a compact subset of X. As X is compact
it is sufficient to prove that ¥(v) is closed. Let (uy,) be a sequence in ¥(v)
converging to w(-) in (CL([0,1]),] - [lc1), that is, for each n € N

1
uy, (t) = / G(t,s)fn(s)ds forallte|0,1], fn €S,
0
fu(t) € —A(t)v(t) — gn(t) a.e. and g, € ®(v).

Since S and ®(v) are (L%, L%)-compact, extracting subsequences we may sup-
pose that (f,,) o(L%,L%)-converges to some mapping f € S and (g,) o(L%,L%)-
converges to some mapping g € ®(v). Hence, by Lemma 2.3 we get

f(t) € —A(t)v(t) — g(t) almost everywhere.

Using the compactness of X and the fact that (f,,) converges o(L%,L%) to f we
conclude that (uy, ) converges to uy in (Ck([0,1]), || - [|c1). Thus we get w = uy
and consequently ¥(v) is closed.

Finally, we need to check that ¥ is upper semicontinuous on the convex
compact set X or equivalently, the graph of ¥

gph(¥) = {(v,u) e X x X :u € U(v)}

is closed in X x X. Let (vp,u,) be a sequence in gph(¥) converging to (v,u) €
X x X, that is, (vp,u,) € X x X and u,, € ¥(v,). (u,) C X implies that there is
a sequence (fy) C S such that

un(t) = uy, (t) = /0 G(t, s)fn(s)ds for all t € [0,1].

Since (f,) C S, extracting a subsequence we may suppose that (f,) o(L%,L%)-
converges to some mapping f € S. Hence (uy,) converges in (CL([0,1]),] - [|c1)
to ug. Thus we get u = uy. On the other hand, u,, € ¥(v,) implies that

(3.9) fu(t) € —A(t)vn(t) — gn(t) almost everywhere,
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and (g,,) C ®(v,) C my(t)Be(0,1) (see the relation (3.7)). Then by extracting
a subsequence we may suppose that (g,) o(L%, L%)-converges to some mapping
g € mi(t)Bg(0,1). As (v,) converges uniformly to v and as the graph of ®
is strongly-weakly sequentially closed we conclude that g € ®(v). Hence, the
relation (3.9) and Lemma 2.3 ensure that

f(t) € —A(t)v(t) — g(t) almost everywhere.

This shows that gph(¥) is closed in X x X and hence we get the upper semicon-
tinuity of ¥. An application of the Kakutani fixed point theorem gives some
us € U(uy). This means f(t) € —A(t)us(t) — g(t) almost everywhere and
g € ®(uy) or equivalently (see the relation (3.6)) g(t) € F(t,uys(t),ur(t)) al-
most everywhere. By (3.3) and (3.5) we get

{ —iif(t) € A(t)us(t) + F(t,up(t),us(t)) for almost every t € [0,1],
up(0) =ugp(1) =0.
This completes the proof of our theorem. O

It is worth to mention that if w is a solution of (Pr), then v € X and hence
lu(-)ller < llmlly-

Now we present an other existence result of solutions of the problem (Pp) if
we replace the hypotheses (¢) and (H2) in Theorem 3.4 by the following ones:

(e) there exists a nonnegative function p; € L2([0, 1]) and two nonnegative
functions p, ¢ € L2([0,1]) satisfying ||p + qllLy <1, such that

F(t,2,y) C (pu(t) + p(®)lzll + a(®)lly)Be (0, 1),

for all (t,z,y) €[0,1] x E x E.
(H3) There is a nonnegative function my € L3([0,1]) such that

sup{|lyl| : y € A(t)z} < ma(t), for all (¢,z) € [0,1] x E.

For this purpose we need the following fundamental lemma.

LEMMA 3.5. Suppose that the assumptions (a), (b), (e) (H1) and (H3) are
satisfied. If u is a Wy ([0, 1])-solution of the problem (P), then for allt € [0,1]
we have

(3.10) [u@®ll < a, [a@)] < o

where oo = [|m|lys /(1 = |lp+ qllr2), and mi = p1 +1/2 and m = mqy + mo.
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PROOF. Suppose that u is a solution of the differential inclusion (Pr).

the hypothesis (e) and (H3) we have

[a()] < ma(t) + 1 F (¢, ult ) a(®))|l
<ma(t) + pr(t) +p(B)[lu@)] + ¢@) @)
= m(t) +p(t)|u(t )H +q@)a)].

But, by the relation (3.1) and (3.2) in Lemma 3.1 we have

lu(t |—H/Gts s)ds /|Gts|||u )il ds

S/O (m(s) +p(s)[[u(s)]| + a(s)lla(s)]) ds

1 1
< / m(s)ds+ [ (p(s)llullcr + q(s)llullcr) ds
0 0
< mlley + lluller(lp + i),
and by (3.2) and (3.4)

o | [ o]

S/ (m(s) +p(s)lluls)ll + g(s)[als)]) ds
0

< mllea + llullcr (lp + glly)-

oG

T —(t,8)

[a(s)| ds

Then
[uller < Imlle: + ([lp + allp)lullcr,

s
ullr < —— "R
Feller < T gy

or equivalently

this shows the estimates (3.10).

We mention now our second existence result of solutions of (Pg).

315

By

THEOREM 3.6. Let E be a finite dimensional space, A(t): E = E, (t € [0,1]),
be a mazimal monotone operator and F:[0,1] x E x E =% E be a closed valued
multifunction. Assume that the hypotheses (a), (b), (e), (H1) and (H3) are

satisfied. Then, the differential inclusion (Pr) has at least a W%l([O,

PROOF. Let us consider the mapping m,:[0,1] x E — E given by
T if [|z]| < &,
Tt ) = .
wx/ll] if [lz] > &,

and consider the multifunction Fy:[0,1] x E x E = E defined by

Fo(t,z,y) = F(t,ma(t, ), ma(t, y)).

1]-solution.
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Then Fp inherits the properties (a) and (b) on F, and furthermore
[Fo(t, 2, 9)l| = [ F(t, ma(t, 2), ma(t, y))|
< p1(t) +p(B)lI7a(t, )| + q(t) [7ma(t, y)
< p1(t) + pt)a + q(t)a = pi(t) + alp(t) + ¢(t) = Bi(t),

for all (t,z,y) € [0,1] x E x E. Consequently Fy satisfies all the hypotheses of
Theorem 3.4. Hence, we conclude the existence of a VV%E’I([O7 1])-solution u of
the problem (Pp,). Furthermore, u satisfy the estimates

(3.11) lu@l <118+ malluy,  [le@l < 18+ mallLy,

where 8 = 31 +1/2.
Now, let us observe that u is a solution of
Pr) —i(t) € A(t)u(t) + F(t,u(t),u(t)), fora.e.te]0,1],
r u(0) = u(1) = 0,

if and only if u is a solution of

{ —ii(t) € A(t)u(t) + Fo(t,u(t),u(t)), for ae. te[0,1],
(PFO)
u(0) =u(l) =0.

Indeed, let u be a solution of (Pr). By Lemma 3.5 we have
lu@] <o, @] <o,
for all t € [0, 1]. Hence 7, (¢, u(t)) = u(t) and 7, (¢, u(t)) = u(t) and consequently
—i(t) € A(t)u(t) + Fo(t, u(t),u(t)) for a.e. t € [0,1],
u(0) =u(l) =0,
that is, u is a solution of (Pg,). Suppose now that u is a solution of (Pg,). Then
li(t)| < ma(t) + [1Fo(t, u(t), a®)]| < ma(t) + B(t)
= ma(t) +ma(t) + alp(t) +q(t)) = m(t) + a(p(t) + q(t)),
and by (3.11) we have
(312)  [u(®)] < lmn+alp+ ) + malles < mllus +ollp + s,
3.13)  Ja@®)| < llma + alp+ ) + melliy < Imlley + allp+ gllns-

But, if we replace a = [[m/[L1/(1 —[[p+¢|r1) in (3.12) and (3.13) we obtain
lu@®)|| < a and ||4(t)|| < « for all ¢ € [0,1], that is, ma (¢, u(t)) = u(t) and
7o (t, u(t)) = u(t). Consequently,

—ii(t) € A(t)u(t) + Fo(t,u(t),u(t)) for ae.te|0,1]
= —i(t) € A(t)u(t) + F(t,u(t),w(t)) for a.e. t € [0,1],
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with u(0) = u(1) = 0. We conclude that u is a solution of (Pg). This finished
the proof of the theorem. |
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