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INVERSES, POWERS AND CARTESIAN PRODUCTS
OF TOPOLOGICALLY DETERMINISTIC MAPS

Michael Hochman — Artur Siemaszko

Abstract. We show that if (X, T ) is a topological dynamical system which
is deterministic in the sense of Kamiński, Siemaszko and Szymański then
(X, T−1) and (X ×X, T ×T ) need not be deterministic in this sense. How-
ever if (X ×X, T × T ) is deterministic then (X, T n) is deterministic for all
n ∈ N \ {0}.

1. Introduction

By a topological dynamical system we mean a pair (X, T ), where X is a com-
pact metric space, and T : X → X an onto continuous map. A factor map be-
tween systems (X, T ) and (Y, S) is a continuous onto map π: X → Y satisfying
Sπ = πT .

This note concerns systems (X,T ) which are topologically deterministic (TD),
i.e. whenever (Y, S) is a factor of (X, T ), the map S is invertable. This notion
was introduced by Kamiński, Siemaszko and Szymański in [3] as a natural topo-
logical analogue of determinism in ergodic theory, which can be defined similarly.
Most work to date has focused on the relation of TD and topological entropy,
see [3] and [2]. A relative version, analogous to the relative entropy theory, was
introduced in [4]. Our purpose here is to study some other basic properties of TD
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systems, namely, the relation between determinism of (X, T ) and determinism
of the systems (X, T n) and (X × X, T × T ).

In the ergodic category, i.e. for measurable transformations T preserving
a probability measure µ, the analogous notion of determinism is that every mea-
surable factor is invertible, and this is well-known to be equivalent to the vanish-
ing of the Kolmogorov–Sinai entropy. Since h(T n, µ) = |n|h(T, µ), n ∈ Z \ {0},
and h(T × T, µ × µ) = 2h(T, µ), the vanishing of any one of these implies the
same for the others, and hence determinism of T , T n and T × T are equivalent.
In the topological category, determinism is not equivalent to zero topological
entropy, and, as it turns out, the relation between determinism of powers and
products is more tenuous.

Theorem 1.1. There exist TD systems (X, T ) such that (X, T−1) is not TD.

Theorem 1.2. There exists TD systems (X, T ) such that (X ×X, T ×T ) is
not TD.

On the other hand,

Proposition 1.3. If (X×X, T ×T ) is TD then (X, T n) is TD for all n ≥ 1.

It is not clear as yet whether determinism of (X, T ) implies the same for
(X, T n), n ≥ 1, although the converse is trivially true, i.e. determinism of (X, T n)
for any n > 1 implies it for (X, T ).

In the next section we prove the proposition. In Sections 3 and 4 we give the
constructions which prove Theorems 1.1, 1.2, respectively.

2. Basic properties of TD systems

For general background on topological dynamics see e.g. [5]. Given a system
(X, T ) and x ∈ X we write

ωT (x) =
∞⋂

n=1

⋃
k≥n

T kx.

Let T ×T denote the diagonal map on X×X : i.e. T×T (x′, x′′) = (Tx′, Tx′′).
Let CER(X) denote the space of closed equivalence relations on X , and ICER(X)
for the invariant ones, i.e.

ICER(X) = {R ∈ CER(X) : T × T (R) = R}.
Also write ICER+(X) for the forward invariance equivalence relations:

ICER+(X) = {R ∈ CER(X) : T × T (R) ⊆ R}.
There is a bijection between factors of (X, T ) and members of ICER+(X), given
by the partition induced by the factor map. The image system is invertable if
and only if the corresponding relation is in ICER(X). It follows that (see in [3]):
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Proposition 2.1. (X, T ) is TD if and only if ICER+(X) = ICER(X).

A point x ∈ X is forward recurrent if there is a sequence nk → ∞ such
that T nkx → x. Clearly if every point in X × X is T × T forward-recurrent
then every forward invariant subset of X × X is invariant, and in particular
ICER+(X) = ICER(X). This implies:

Lemma 2.2. Let (X, T ) be a topological dynamical system. If every point of
X × X is forward-recurrent for T × T then (X, T ) is TD.

This is the main condition used to establish that a system is TD. We shall see
that it is not in fact equivalent to TD, see Section 4. However, there is a partial
converse:

Lemma 2.3. If (X, T ) is deterministic then every point in X is forward
recurrent for T .

Proof. Suppose x ∈ X is not forward recurrent. Set

X0 = {T nx : n ≥ 0} ∪ ωT (x).

It is easily checked that X0 is a closed and forward-invariant but not invariant
subset of X . Let

R = {(x′, x′′) : x′, x′′ ∈ X0} ∪ {(x, x) : x ∈ X}.
Then R ∈ ICER+ but R /∈ ICER. Hence (X, T ) is not TD.

Lemma 2.4. If x is forward recurrent for T then x is forward recurrent for
T n for every n ≥ 0.

Proof. Denote by ωf(y) the ω-limit set of a point y under a map f . Assum-
ing the contrary, let N be the least natural number such that x is not forward
recurrent for (X, T N), i.e. x /∈ ωT N (x) but x ∈ ωT n(x) for all 1 ≤ n < N . Since

ωT (x) =
N−1⋃
k=0

ωT N (T kx)

there is some 0 < r < N for which x ∈ ωT N (T rx), or equivalently T Mx ∈
ωT N (x), where M = N − r. Hence ωT N (T Mx) ⊆ ωT N (x). Since T M is an
endomorphism of (X, T ), it follows from T Mx ∈ ωT N (x) that

T 2Mx = T M(T Mx) ∈ ωT N (T Mx) ⊆ ωT N (x)

and by induction T kMx ∈ ωT N (x) for every k ≥ 0, so ωT M (x) ⊆ ωT N (x). Hence
x /∈ ωT M (x). But 0 < M < N , contradicting the definition of N . �

Proof of Proposition 1.3. Suppose (X × X, T × T ) is TD; we wish to
show that (X, T n) is TD for all n ≥ 1.
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If (X×X, T ×T ) is TD then, by Lemma 2.3, every point in X×X is forward
recurrent for T × T . Hence, by the last lemma, for every n ≥ 1, every point
in X × X is forward recurrent for (T × T )n. Thus by Lemma 2.2, (X, T n) is
deterministic. �

3. Proof of Theorem 1.1

We construct a deterministic system (X, T ) such that (X, T−1) is not deter-
ministic.

A system (X, T ) is pointwise rigid if there exists a sequence (nk)∞k=1 ⊆ N

such that T nkx → x for every x ∈ X . Clearly this implies that (X × X, T × T )
is also pointwise rigid and that every point in X ×X is forward recurrent, so by
Lemma 2.2 (X, T ) is TD. We shall construct a pointwise rigid system such that
(X, T−1) contains a fixed point x0 and a point x0 �= x ∈ X such that T−nx → x0;
thus x is not forward recurrent for T−1 so (X, T−1) is not deterministic. Note
that this also shows that (X, T−1) is not pointwise rigid, even though (X, T ) is.
A similar construction appears in [1].

Write I = [0, 1]. Let N = {1, 2, . . .} and endow IN with the product topology.
Write x(i) for the i-th coordinate of x ∈ IN and let T denote the shift map on IN,
i.e. (Tx)(i) = x(i + 1).

We aim to construct a point x ∈ IN and a sequence (nk)∞k=1, nk → ∞, such
that

(1) 0k1 appears in x for arbitrarily large k,
(2) If ab1 . . . bk appears in x for some symbols a, bi ∈ [0, 1], and bi ≤ ε for

i = 1, . . . , k then a ≤ ε + 1/u(k), where u(k) is a sequence tending to
∞ as k → ∞.

(3) If y = T mx and y(1) . . . y(k) �= 0 . . . 0 then |T nky(i) − y(i)| < 1/k for
i = 1, . . . , k.

Assuming we have constructed such a point x, take X ⊆ [0, 1]Z to be the
bilateral extension of the orbit closure of x, that is, the set of y ∈ IZ such
that every finite subword of y appears in some accumulation point of {T kx}∞k=1.
Condition (1) implies that the fixed point 0 = . . . 000 . . . is in X and that there
is a point y = . . . 0001y′ in X for some y′ ∈ IN. Clearly the backward orbit
of y under the shift converges to 0. Condition (3) implies that if z ∈ X is not
forward-asymptotic to 0 then T n(k)z → z. Finally, (2) guarantees that the only
point which is forward asymptotic to 0 is 0 itself: indeed, if z is asymptotic to 0
then, for every ε > 0, there is an i0 such that z(i) < ε for every i > i0, and it
follows from this that z(i) ≤ ε for every i ≤ i0 as well, and consequently z = 0.
Since 0 is a fixed point, (1)–(3) imply that (X, T ) is pointwise rigid.

The definition of x is by induction. Start the induction with n1 = 3 and
x1 = 100.
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At the m-th stage of the construction we will have defined n1, . . . , nm ∈ N

and xm = x(1) . . . x(nm) and the final m + 1 letters of xm will be 0.
Suppose this is the case; we must define nm+1 and xm+1. For t ∈ [0, 1] let

t · xm for the pointwise product, i.e. (t · xm)(i) = t · xm(i). Note that 0 · xm =
00 . . .0. Also write ab for the concatenation of a and b. Define

xm+1 = xmxm

(
m

m + 1
· xm

)(
m − 1
m + 1

· xm

)
. . .

(
1

m + 1
· xm

)(
0 · xm

)

and let nm+1 be the length of xm+1 (so by induction nm+1 = (m + 3)nm and,
in particular, nm ≥ m).

Each xm thus begins with a 1 and ends with 0nm , and since xm+1 begins
with xmxm condition (1) of the construction holds.

To verify (2), define u = u(k) to be the least integer u such that the length
of xu is at least k. Note that all xn for n ≥ u, and therefore all x ∈ X ,
are concatenations of blocks of the form t · xu−1. Therefore our given block
c = ab1 . . . bk is contained in a concatenation c0c1 . . . cp+1, where p ≥ 2 is some
integer, ci are of the form ti · xu−1 for 1 ≤ i ≤ p, c0 is t0 · xu−1 or a non-empty
terminal sub-block of it, and cp+1 is tp+1 · xu−1 or an initial sub-block of it.
Notice that, by choice of u, the sequence ti is either decreasing (if c is actually
contained in a block of the form t ·xu), or is the concatenation of two decreasing
sequences. In the latter case, the second decreasing sequence must begin with a
1, so one of the bj ’s is the first symbol of xu−1, which is a 1, and so ε ≥ 1 and
the conclusion a ≤ ε is trivial. In the former case, there exists an r ≥ i such that
ti = (r − i)/u for all i. Then once of the bj ’s is the first symbol of (r − 1)/u · xu,
so ε ≥ (r − 1)/u. But a belongs to r/u · xu so a ≤ r/u ≤ ε + 1/u, which is the
desired inequality.

For (3), we claim that for each m and k < m if 0 ≤ i < nm − nk and
xm(i), . . . , xm(i + k − 1) �= 0 then |xm(i) − xm(i + nk − 1)| < 1/k. The proof
is by induction on m, using the fact that if y satisfies this condition then so
does t · y for t ∈ [0, 1]. Specifically, let m, k, i as above. If k = m − 1 the proof
is immediate from the construction. Otherwise write xm = y1 . . . ym+2 with
yj = tjx

m−1 as in the definition. Let i = s · nm−1 + i′ for s ∈ {0, . . . , m + 1},
i′ ∈ {0, . . . , nm−1 − 1}. If 0 ≤ i′ ≤ nm−1 − nk we can apply the induction
hypothesis. Otherwise, i′ is in the final 0nm−2-block of ys so the assumption that
xm(i), . . . , xm(i + k − 1) �= 0 implies that i′ > nm−1 − k. But now note that
ys+1 = xkz for some z, so ys+1(nk − i′) = 0 because the final k letters of xk are
0. So xm(i) = xm(i + nk) = 0 and we are done. �

4. Proof of Theorem 1.2

We shall construct a system (X, T ) which is TD, but (X × X, T × T ) is
not TD. To establish the first property, we rely on the following result:
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Lemma 4.1. Suppose (X, T ) has the property that for every (x′, x′′) ∈ X×X,
either (x′, x′′) is forward recurrent for T × T or else there is a p ∈ X such that
(x′, p), (p, x′′) ∈ ωT×T (x′, x′′). Then (X, T ) is deterministic.

Proof. It suffices to show that ICER+ = ICER. Let R ∈ ICER+ and
let (x′, x′′) ∈ R. Since ωT×T (x′, x′′) ⊆ TR, if the first condition holds (i.e. if
(x′, x′′) ∈ ωT×T (x′, x′′)) then (x′, x′′) ∈ TR. Otherwise there is a p ∈ X so that
(x′, p), (p, x′′) ∈ ωT×T (x′, x′′) ⊆ TR, and since TR is an equivalence relation, this
means (x′, x′′) ∈ TR. We have shown that (x′, x′′) ∈ TR whenever (x′, x′′) ∈ R,
so R ⊆ TR. The reverse containment holds by assumption so R ∈ ICER, and
the lemma follows. �

We shall construct a system containing a fixed point which will play the
role of the point p in the lemma, i.e. every pair (x′, x′′) in the system which
is not forward recurrent will have (x′, p), (p, x′′) ∈ ωT×T (x′, x′′). For simplicity
we describe a non-transitive example, and then explain how to modify it to get
a transitive one.

Let T be the shift on [0, 1]Z. A block is a finite subsequence x ∈ [0, 1]{1,... ,n};
here n is the length of the block. If x, y are blocks of length m, n respectively their
concatenation is written xy and is the block x(1) . . . x(m)y(1) . . . y(n) of length
m + n. For x ∈ [0, 1]Z a sub-block is a block of the form x(i), x(i + 1), . . . , x(j);
this is the block of length j− i+1 appearing in x at i. We denote this sub-block
by x(i; j). We say that blocks x1, x2 occur consecutively in x if x1 = x(i, j) and
x2 = x(j + 1, k) for some i ≤ j < k.

To construct the example we define two points x∗, y∗ ∈ [0, 1]Z with x∗(0) =
y∗(0) = 1, and take X, Y to be their orbit closure, respectively. We also define
sequences mk → ∞ and nk → ∞ so that the following conditions are satisfied:

(i) ‖x∗ − T mkx∗‖∞ ≤ 1/k for k ≥ 1.
(ii) ‖y∗ − T nky∗‖∞ ≤ 1/k for k ≥ 1.
(iii) For k ≥ 1, out of every three consecutive blocks in x∗ of length nk at

least two are identically 0.
(iv) For k ≥ 1, out of every three consecutive blocks in y∗ of length mk at

least two are identically 0.
(v) For every k �= 0, at least one of the symbols x∗(k) or y∗(k) is equal to 0.

Let X be the orbit closure of x∗ and Y the orbit closure of y∗. We claim that
given such points x∗, y∗ the system Z = X∪Y is deterministic, but Z×Z is not.
Indeed, the latter statement follows from the observation that by condition (v)
and the fact that x∗(0) = y∗(0) = 1, the pair (x∗, y∗) ∈ Z × Z is not forward
recurrent for T × T , so Z × Z is not deterministic.

To see that Z is deterministic, note that the properties (i)–(iv) above hold
when x∗, y∗ is replaced by any pair x ∈ X , y ∈ Y . Condition (i) now implies that
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T mk |X → idX uniformly, and similarly (ii) implies that T nk |Y → idY uniformly,
and in particular every pair in X is forward recurrent for T × T and so is every
pair from Y . For x ∈ X , y ∈ Y , conditions (i) and (iv) imply that there is
a choice of r(k) ∈ {1, 2, 3} so that T r(k)mkx → x but T r(k)mky → 0, and hence
(x, 0) ∈ ωT×T (x, y). Similarly (ii) and (iii) imply that there is a choice s(k) ∈
{1, 2, 3} so that T s(k)nkx → 0 but T s(k)nky → y, so also (0, y) ∈ ωT×T (x, y).
From the lemma it now follows that Z = X ∪ Y is deterministic.

Here are the details of the construction. We proceed by induction on r. At
the r-th stage we will be given an integer L(r) ≥ r − 1 and finite sequences
xr, yr ∈ [0, 1]{−L(r),−L(r)+1,... ,L(r)}, and if r ≥ 2 we are also given integers mr−1,
nr−1. We extend xr to xr+1 and yrto yr+1 without changing the symbols already
defined. The blocks xr , yr will satisfy the following versions of the conditions
above, and an additional condition which is required for the induction:

(I) ‖xr(i; i + k) − xr(i + mk; i + mk + k)‖∞ ≤ 1/k for 1 ≤ k ≤ r − 1 and
−L(r) ≤ i ≤ L(r) − mk − k.

(II) ‖yr(i; i + k) − yr(i + nk; i + nk + k)‖∞ ≤ 1/k for 1 ≤ k ≤ r − 1 and
−L(r) ≤ i ≤ L(r) − nk − k.

(III) For 1 ≤ k ≤ r − 1, out of every three consecutive blocks in xr of length
nk at least two are identically 0.

(IV) For 1 ≤ k ≤ r − 1, out of every three consecutive blocks in yr of length
mk at least two are identically 0.

(V) For every k �= 0 between −L(r) and L(r), at least one of the symbols
xr(k) or yr(k) are equal to 0.

(VI) mk, nk ≤ L(r−1) for each 1 ≤ k ≤ r−1, and the first and last 2L(r−1)
symbols of xr and yr are 0.

Assuming that such a sequence xr , yr exists, define x∗, y∗ ∈ [0, 1]Z by x∗(i) =
xi+1(i) and y∗(i) = yi+1(i). It is straightforward to verify that these conditions
guarantee that x∗, y∗ have the desired properties.

We start the induction by L(1) = 0 and x1(0) = y1(0) = 1; all conditions are
satisfied trivially.

For some r ≥ 2 suppose we are given xr, yr, L(r) and also mk, nk for 1 ≤
k < r, such that (I)–(VI) are satisfied. For a block z and α ∈ [0, 1], denote by
α · z the block with (αz)(i) = α · z(i).

Let s, t, s′, t′ be integers which we shall specify later. Let u and v be blocks
of 0’s of length s, t, respectively, and set

xr+1 = v

(
1

r + 1
·xr

)
u . . . u

(
r

r + 1
·xr

)
u xr u

(
r

r + 1
·xr

)
u

(
r − 1
r + 1

·xr

)
u

. . . u

(
1

r + 1
· xr

)
v.
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Let u′, v′ to be blocks of 0’s of length s′, t′, respectively, and set

yr+1 = v′
(

1
r + 1

·yr

)
u′ . . . u′

(
r

r + 1
·yr

)
u′ yr u′

(
r

r + 1
·yr

)
u′

(
r − 1
r + 1

·yr

)
u′

. . . u

(
1

r + 1
· yr

)
v′.

Note that in defining xr+1, yr+1 we have added blocks to the left and right of
the central copy of xr, yr, respectively, without changing the central blocks. We
will assume that s, t, s′, t′ are chosen so that the lengths of xr+1, yr+1 are equal.
We define L(r + 1) to be their common length (see Figure 1).

By condition (VI), xr+1 and yr+1 satisfy (I) and (II) for r+1 and 1 ≤ k < r.
More precisely, suppose that 1 ≤ k < r and −L(r+1) ≤ i ≤ L(r+1)−mk+1−k,
and consider the blocks of length k in xr+1 at positions i and i + mk. There are
two possibilities. Either both blocks are located inside the same copy of t ·xr for
some t, in which case ‖xr(i; i+k)−xr(i+mk; i+mk+k)‖∞ ≤ 1/k by the induction
hypothesis, or else at least one is located in an u and the other either in the first
or last mr symbols of a block of the form t · xr . In both of the last possibilities,
the blocks are blocks of 0’s (because u is all 0’s and because of condition (VI) of
the induction hypothesis) so ‖xr(i; i + k) − xr(i + mk; i + mk + k)‖∞ ≤ 1/k is
satisfied trivially. The analysis for yr+1 is similar.

t · xr

v′ v′u′ u′ u′ u′

t · yr

xr =

yr =

xr+1 =

yr+1 =

u u u u vv

Figure 1. The construction of xr+1, yr+1 form xr, yr (schematic)

Define mr = L(r) + s. Then xr+1 also satisfies condition (I) for k = r,
because every two symbols in xr+1 whose distance is L(r) + s belong to blocks
of the form (i/r + 1) · xr and ((i ± 1)/(r + 1)) · xr, and so differ in value by at
most 1/(r + 1). Similarly, if we define nr = L(r) + s′ then yr+1 satisfies (II) for
k = r.
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If we choose s, t, s′, t′ large enough, conditions (III), (IV) hold for xr+1, yr+1.
The same is true also for (VI).

It remains to obtain (V). We still have freedom to choose s, s′, t, t′ subject
to the restriction that xr+1, yr+1 have the same length, and as long as they
are large enough. We first fix s some arbitrarily sufficiently large number (this
determines the value of mk). Next, we select s′ large enough so that each non-
zero component of xr+1 is opposite the central block 0s′

yr 0s′
in yr+1 (here 0m

is the word consisting of m zeros); this implies also that each non-zero symbol in
yr+1 outside of the central block yr is opposite a 0 in xr+1. See Figure 1. This
and the induction hypothesis guarantees that (V) holds. It remains only to note
that although t determines t′, we can still make each as large as we want. This
completes the construction.

Note that not every point in X × X is forward recurrent but X is TD. This
shows that Lemma 2.2 is only a sufficient condition for TD, not a necessary
condition.

Finally, in order to give a transitive example, one adds an intermediate step
between each step of the construction above. Given xr, yr one forms the blocks

x′
r = byraxrayrb, y′

r = dxrcyrcxrd,

where a, b, c, d are sufficiently long blocks of 0’s chosen (in a manner depending
on r) so that x′

r, y′
r have the same length L′(r), and condition (V) holds as

before. The resulting limiting points x∗, y∗ will have the same orbit closure Z.
The previous analysis no longer holds, but instead one can show that locally
something similar is true. For each z ∈ Z, if one looks at a sub-block of length
of order L(k) in the sequences xr or yr for some r > k, then one will see a block
which, for mk, nk, satisfies conditions similar to the ones we had previously. Thus
the same holds for any block of this length in Z. Therefore for any z, z′ ∈ Z, we
will either have that T ukz → z and T ukz′ → z′ for some squence uk ∈ {mk, nk},
or else (z′, 0̄) is in the forward orbit closure of the pair (z, z) and (0̄, z′) is in
the forward orbit closure of (z′, z′), and as before we conclude that Z is TD but
Z × Z is not.
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